Your name: Your email address:
MrBayes by example: Identification of sites under positive selection in a protein
Professor Walter M. Fitch and assistant research biologist Robin M. Bush of UCI's Department of Ecology and Evolutionary Biology, working with researchers at the Centers for Disease Control and Prevention, studied the evolution of a prevalent form of the influenza A virus during an 11-year period from 1986 to 1997. They discovered that viruses having mutations in certain parts of an important viral surface protein were more likely than other strains to spawn future influenza lineages. Human susceptibility to infection depends on immunity gained during past bouts of influenza; thus, new viral mutations are required for new epidemics to occur. Knowing which currently circulating mutant strains are more likely to have successful offspring potentially may help in vaccine strain selection. The researchers' findings appear in the Dec. 3 issue of Science magazine.
Fitch and his fellow researchers followed the evolutionary pattern of the influenza virus, one that involves a never-ending battle between the virus and its host. The human body fights the invading virus by making antibodies against it. The antibodies recognize the shape of proteins on the viral surface. Previous infections only prepare the body to fight viruses with recognizable shapes. Thus, only those viruses that have undergone mutations that change their shape can cause disease. Over time, new strains of the virus continually emerge, spread and produce offspring lineages that undergo further mutations. This process is called antigenic drift. "The cycle goes on and on-new antibodies, new mutants," Fitch said.
The research into the virus' genetic data focused on the evolution of the hemagglutinin gene-the gene that codes for the major influenza surface protein. Fitch and fellow researchers constructed "family trees" for viral strains from 11 consecutive flu seasons. Each branch on the tree represents a new mutant strain of the virus. They found that the viral strains undergoing the greatest number of amino acid changes in specified positions of the hemagglutinin gene were most closely related to future influenza lineages in nine of the 11 flu seasons tested.
By studying the family trees of various flu strains, Fitch said, researchers can attempt to predict the evolution of an influenza virus and thus potentially aid in the development of more effective influenza vaccines.
The research team is currently expanding its work to include all three groups of circulating influenza viruses, hoping that contrasting their evolutionary strategies may lend more insight into the evolution of influenza.
Along with Fitch and Bush, Catherine A. Bender, Kanta Subbarao and Nancy J. Cox of the Centers for Disease Control and Prevention participated in the study.
The goal of this exercise is to detect sites in hemagglutinin that are under positive selection.
Since the analysis takes a very long time to run (several days), you are provided with the parameter file form a MrBayes run, plus other files that we will use today: lab11.zip, The original data file is flu_data.paup . The dataset is obtained from an article by Yang et al, 2000 . The File used for the MrBayes run we are analyzing today is Fitch_HA_new.nex (in the zip archive). The MrBayes block used to obtain results above is: begin mrbayes; set autoclose=yes; lset nst=2 rates=gamma nucmodel=codon omegavar=Ny98; report possel = yes siteomega = yes; mcmcp filename=FitchNew; mcmcp samplefreq=1000 printfreq=1000; mcmcp savebrlens=yes; mcmc ngen=1000000; sump ; sumt ; end; The two parameter files are FitchNew.run1.p and FitchNew.run2.p
Selecting a nucmodel=codon with Omegavar=Ny98 specifies a model in which for every codon the ratio of the rate of non-synonymous to synonymous substitutions is considered. This ratio is called OMEGA. The Ny98 model considers three different omegas, one equal to 1 (no selection, this site is neutral); the second with omega < 1, these sites are under purifying selection; and the third with Omega >1, i.e. these sites are under positive or diversifying selection. report possel = yes siteomega = yes; tells the program to also print out the probability that the site is under positive selection, and the estimated omega value.
Send email to your instructor (and yourself) upon submit Send email to yourself only upon submit (as a backup) Show summary upon submit but do not send email to anyone.