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F16. 6. Amino acid sequence homology between the cata-
lytic subunits of yeast and Neurospora crassa vacuolar mem-
brane H*-ATPases. Identical residues and conserved amino acid
replacements are indicated by stars and dots, respectively. Dashes
represent gaps introduced to obtain maximum matching.
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F1G. 5. Lack of subunit a in total cell lysate from vmal null
mutant cells. Total cell lysate was prepared as described under
“Materials and Methods” from RH101 (vmal, lane 1), ANY21
(VMALI, lane 2) and ANY21 harboring multicopy plasmid without or

with VMAI gene (lanes 3 and 4). About 50 ug of proteins was
separated on a 10% SDS-polyacrylamide gel and blotted onto a
nitrocellulose membrane. Subunit a was detected using an anti-

subunit a monoclonal antibody.

F1G. 8. Northern blot analysis of the VMAI mRNA. Poly(A)*
RNA was isolated from ANY21, size fractionated on an agarose-
formamide gel (1.2% gel), and transferred to a nylon membrane filter.
Blots were hybridized with the DNA probes shown in A. Hatched
region represents the nonhomologous insert (see “Results”). Hybrid-
ization patterns for probe-1 (lane 1) and probe-2 (lane 2) are shown
in B. About 5 ug of RNA was loaded in each lane.
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Levels Of Selecthn Competition between holobionts (host plus symbionts) and
between microbial communities (consisting of multiple
species in a syntrophic relationship)

Competition between groups
(groups that adapt or evolve faster outcompete
other groups)

Competition between individuals
(genes in organisms with higher fitness
increase in frequency in the population)

Gene-level selection

(selfish genes that cooperate to construct
a fit organism; parasitic genetic elements
that may have a negative impact on

host fitness)
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Inteins (molecular fleas):
Self-Splicing Protein Mobile Elements

DNA W@o Intein Self-Splicing Domains

Auto catalytic splicing reaction

RNA /\I\J/\/\ removes the intein from the host protein

Intein Homing Endonuclease Domain
Recognizes unoccupied intein insertion

Protein sites (IIS) and disrupts the sequence

with a

Host protein

double strand break



Intein Homing
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Conservation of intron and intein insertion sites: Implications for life histories of parasitic genetic elements.
BMC Evolutionary Biology 2009, 9:303 doi:10.1186/1471-2148-9-303 (Highly Accessed)



In case of inteins the co-evolution of genes results in

* Mutualism between splicing and homing endonuclease domain

« Commensalism between host protein and intein without HE domain

g

e Parasitism between host protein and intein with HE
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How can inteins with functional homing
endonuclease survive on the long run?

* Homing cycle
e Coexistence of the three forms (preditor prey with three
partners, in an intransitive fitness relationship)

* Diverse environment with regions that select for the intein, and
those that don’t



Intein/Intron with HE
from another Gene,
Species, Population, or
Subpopulation.

Empty
Target Site

Precise Loss ,
Transfer of Homing Endonuclease

and Invasion of Local Population
Homing
Cycle

Retained as
Functional
Endonuclease

Intein/Intron with
Functional Homing
Endonuclease

Intein/Intron without
or with Dysfunctional
oming Endonuclease

/

Acquisition of

Degeneration New Function

Homing cycle of a parasitic genetic element (modified from [3, 13]). Recent findings
suggest that due to complex population structure the cycle might not operate in
synchrony in different subpopulations. The red arrows indicate the trajectory of the
functioning HE and the black arrows the fate of the host gene. The precise loss can
occur through recombination with an intein or intron free allele, or, in case of introns,
through recombination with a reverse transcript of the spliced mRNA [39, 40].

Gogarten, J. Peter and Elena Hilario (2006)
Inteins, introns, and homing endonucleases: Recent revelations about the life cycle of parasitic genetic elements.

BMC Evolutionary Biology 6:94 Open Access (Highly Accessed)



Coexistence of the three forms
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Inteins have a high fithess cost for the host organism. BSE
S K7
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Fig 6. Maximum likelihood phylogeny for polB extein sequences (left) and conservation of
polB-c intein insertion sites (right). Numbers give support values calculated using the
approximate Likelihood Ratio Test as implemented in phyml 3.0 (32). Although drawn as a
rooted, the tree should be considered unrooted. The finding that sequences without (blue) and
with intein (red) do not always form distinct clans (34) reveals that invasion of the Haloferax
genus with the polB-c intein is an ongoing process. The panel on the right shows a polB
nucleotide sequence alignment around the intein insertion site c. Web logos (33) give the site
conservation for intein minus (top) and intein plus sequences (bottom). The five intein minus
sequences that group within the cluster of intein plus sequences are marked with an asterisk.
The intein minus sequences show greater nucleotide diversity surrounding the intein insertion
site, mainly in synonymous positions -- only two positions at the 5’ and close to the 3’ end of
the alignment represent non-synonymous changes. Homing endonuclease site specificity was
shown to tolerate substitutions that result in non-synonymous changes (35), suggesting that none
of the depicted Haloferax sequences may be immune to intein invasion.



Frequency of reads mapped to Natronomonas moolapensis rirlg

Reads mapped to Natronomonas moolapensis rirlg with intein removed Lake Meyghan  Reads mapped to Natronomonas moolapensis rirlg with intein Lake Meyghan
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 Metagenomic reads from Lake Meyghan* mapped back to reference sequences with and without
the intein.

* Intein was artificially removed, to intact insertion site.

* Red lines indicate intein boundaries, sharp decrease in coverage when intein removed.

*Naghoni, A. et al. Microbial diversity in the hypersaline Lake Meyghan, Iran. Sci. Rep. 7, (2017).



Simulation: Homogeneous Environment
with localized random extinctions

on ticks

Agent based modeling using NetLogo
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Changing conditions (temporal and/or spatial) can facilitate the long-
term coexistence of homing endonucleases with empty target sites

Two environments with

different frequencies of local Environment with a I
extinction events gradient in efficiency of o
. . local extinction events

i Overall Population,

rrrrrrrrr

Population held in
exponential phase

Population enters
stationary phase

Close to stationary phase: Inteins During active growth: Due to fitness

transmission continues, increasing cost of the intein, the frequency of the
the frequency of the invaded allele noninvaded allele increases



A heterogeneous environment can lead to long-term stable
coexistence of invaded and uninvaded genes

Simulation of a two-compartment
system (each of the
compartments is homogenous)
using iterations.

In each discrete generation 10%
of the population dies in
compartment 2, and .1% move
between compartments. Without
death the carrying capacity is 2 in
each compartment.
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How can inteins with functional homing
endonuclease survive on the long run?

* Homing cycle

* Coexistence of the three forms (preditor prey with three
partners, in an intransitive fitness relationship)

* Diverse environment with regions that select for the intein,
and those that don’t

* They picked up a function that increases the fitness of the host
(emergency shut off, if conditions are bad — e.g., salt,
temperature, redox potential; mating type switching
endonuclease, weapon against competitors).
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Infinite Regress

After a lecture on the structure of the solar system, the cosmologist William James was
accosted by a little old lady.

"Your theory that the sun is the centre of the solar system, and the earth is a ball which
rotates around it has a very convincing ring to it, Mr. James, but it's wrong. I've got a
better theory," said the little old lady.

"And what is that, madam?" inquired James politely.

"That we live on a crust of earth which is on the back of a giant turtle."

Not wishing to demolish this absurd little theory by bringing to bear the masses of
scientific evidence he had at his command, James decided to gently dissuade his
opponent by making her see some of the inadequacies of her position.

"If your theory is correct, madam," he asked, "what does this turtle stand on?"

"You're a very clever man, Mr. James, and that's a very good question," replied the little
old lady, "but | have an answer to it. And it's this: The first turtle stands on the back of a
second, far larger, turtle, who stands directly under him."

"But what does this second turtle stand on?" persisted James patiently.

To this, the little old lady crowed triumphantly,

"It's no use, Mr. James—it's turtles all the way down.”

From Ross, John R. (1967). Constraints on variables in syntax (Doctoral dissertation). MIT. hdl:1721.1/15166.
via https://en.wikipedia.org/wiki/Turtles all the way down
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big fleas  “~
have Lirle Aleas
OR

3\ WHO'S WHO AMONG
THE PROTOZOA

ROBERT HEGNER

Siphonaptera

Great fleas have little fleas upon their backs to bite 'em,

And little fleas have lesser fleas, and so ad infinitum.
And the great fleas themselves, in turn, have greater fleas to go on ;

While these again have greater still, and greater still, and so on.

From: Augustus De Morgan’s poem Siphonaptera (1872)
via https://en.wikipedia.org/wiki/Siphonaptera (poem)
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Phage Assembly
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From: Corynne L. Dedeo, Gino Cingolani, and Carolyn M. Teschke:
Portal Protein: The Orchestrator of Capsid Assembly for the dsDNA Tailed Bacteriophages and Herpesviruses

Annual Review of Virology 2019



Exteins and their inteins

fromm homologous
terminase subunits in
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Reconciliation between extein and intein trees
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This is one of many equally parsimonious reconciliations (allowing for transfer, duplication and loss).

Note that the Auckland cluster requires only one intein acquisition at the base.



The A1 Phages from the Auckland area

Name Ece)ell;t?jn Location Description of Location
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Phylogeny based on extein sequences (topology is
the same if the whole genomes are used):
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Phylogeny of an Actinophage Methylase Family
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