MCB 5472

The Queue, Phylogenetic Reconstruction and Selection

Peter Gogarten Office: BSP 404 phone: 860 486-4061, Email: <u>gogarten@uconn.edu</u>

Old exercises:

Write a program that it uses hashes to calculates mono-, di-, tri-, and quartet-nucleotide frequencies in a genome.

Go over tetraA.pl

New exercises:

modify tetraA.pl so that the user (or another program) can assign the size of the nmer as a variable!

Old Assignments:

•Re-read chapter P16-P18 in the primer

•Given a multiple fasta sequence file*, write a script that for each sequence extract the gi number and the species name. and rewrites the file so that the annotation line starts with the gi number, followed by the species/strain name, followed by a space. (The gi number and the species name should not be separated by or contain any spaces – replace them by _. This is useful, because clustalw will recognize the number and name as handle for the sequence.)

•Work on your student project

•Assume that the annotation line follows the NCBI convention and begins with the > followed by the gi number, and ends with the species and strain designation given in [] Example:

```
>gi|229240723|ref|ZP_04365119.1| primary replicative DNA helicase; intein [Cellulomonas flavigena DSM 20109]
```

Example multiple sequence file is <u>here</u>.

an error prone solution is at convertannotationline.pl

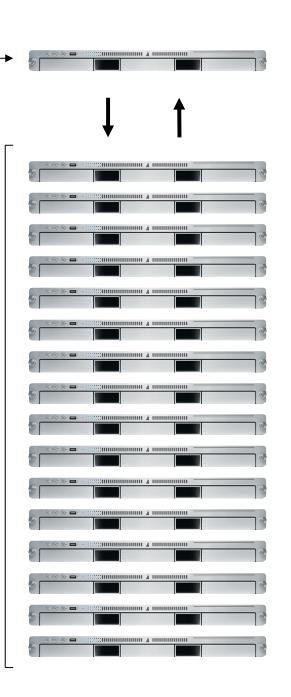
New Assignment:

Rewrite this script so that is uses the \$& variable to extract the gi number and the species name.

Symbol	Meaning	
	any character	
\w	alphanumeric and _	
\W	any non-word character	
∖s	any whitespace	
\S	any non-whitespace	
\d	any digit chara <mark>cter</mark>	
\D	any non-digit	
	character	
\t	tab	
\n	newline	
*	match 0 or more times	
+	match 1 or more times	
?	match 1 or 0 times	
{n}	match exactly n times	
{n,m}	match n to m times	
^	match from start	
\$	match to end	

Bioinformatics Facility of the Biotechnology

The Do and Don't of the Xserve Cluster


Pascal Lapierre, Facility Scientist Biotech Center, G05 486-8742

The next ten slides were provided Pascal Lapierre

Node001 To Node017

Head

Node

Xserve Cluster Physical Organization

- 2 x 2.3GHz G5 processors
- 2 GB of memories per node (8 GB on node 17)

-2.3 TeraBytes of Storage on the head node.

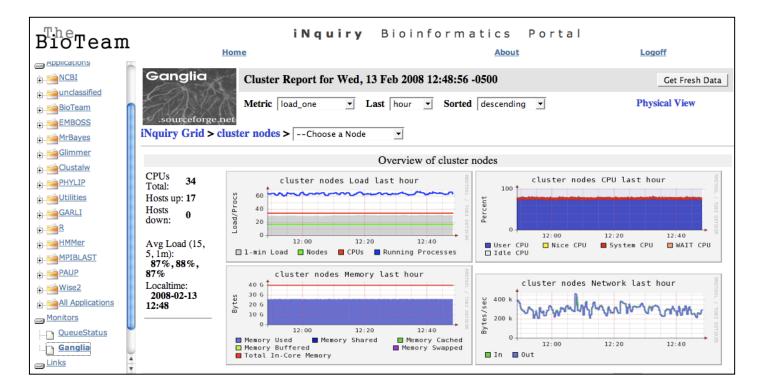
- 2 other mini clusters assigned for special projects

Basic Rules

- For research purpose only. Not a place to put your favorite MP3 or backup your HD.

- Do not overload the systems. It is ok to use ~6 nodes in period of low activities but when it gets busy, limit yourself to only 2-3 nodes if absolutely necessary.

- Always keep track of your jobs. Don't let things running unattended for months.


- Use the queue system whenever you can.

- Do not run jobs on the Head node.

Remote Access

- Via SSH or Web Interface

- ssh your_name@bbcxsrv1.biotech.uconn.edu
- http://www.biotech.uconn.edu/bf/

Useful Commands

(Help page available at : <u>http://137.99.46.188/wiki/index.php/Main_Page</u>)

qstat : Shows the current status of the available Grid Engine queues and the jobs associated with the queues.

- ls : List directory contents
- ps : Display the process status. Allow to get process ID.
 -ps ux : Displays your process only
 -ps aux : displays all the process running on the node

du : display disk usage statistics. Use du -h for a readable output (df for disk space)

Useful Commands (cont)

mkdir and rmdir : create and remove directories

cp : copy files

mv : moved files (can be used to rename files)

rm : remove files. rm -r to remove files and sub-directories

kill : to kill a running process. Kill -9 'proc_id'

The queue system

"Managing Workload by Managing Resources and Policies"

qstat : Display the queue status.

qrsh : Queue remote shell. Automatically
select an available node to log on.

qsub : Queue submit. Automatically submit a job to an available node. Used in conjuncture with a shell script (see next slide).

qde1 : Delete a job running in the queue.

qdel - process_ID

How to submit a job using qsub?

A shell script is just a small text file pointing to what you want to run in the queue.

For example, if I want to submit a perl script (phyml_trees1.pl), I will create a text file name phyml.sh :

```
#!/bin/sh
cd /Users/nucleus/evolver
perl phyml_trees1.pl
#end of script
```

To submit the shell : qsub phyml.sh

Things to be cautious :

-While highly reliable, the cluster might sometimes run into problems and needed to be rebooted. This will cause to loose all the processes that were running at the time. Try to think of ways to break up or save at different stage of your analyses.

-The NFS (Network File System) have temporary amnesia. When overwhelm, the system will forget to write part of the output files. A workaround is to save to the scratch drive of the individual nodes (cd /scratch).

- blastall -p blastp -d nr -o /scratch/pascal/blast.out -a 2 -F F -m 9

Tricks that I have learned

In Perl, Array of Arrays are useful for grid-like manipulations of data :

##!/usr/bin/perl -w	<t =<="" th=""><th>MRRAIATNQQ MRLAIISRQD</th></t>	MRRAIATNQQ MRLAIISRQD
		MRRLSISRQQ
<pre>\$infile = "seq.txt";</pre>		MRLAIIIRQQ
open (FILE,\$infile);		↓
while (\$in = <file>) { #go infile line by lin</file>	e	0123456789
chomp \$in;	0	MRRAIATNQQ
-	1	MRLAIISRQD
<pre>@data = split ('',\$in); #split using `'</pre>	2	MRRISISRQQ
<pre>push @matrix,[@data]; # put the array @data</pre>	3	MRLAIIIRQQ

Print \$matrix[2][4]; → S

the gradualist point of view

Evolution occurs within populations where the fittest organisms have a selective advantage. Over time the advantages genes become fixed in a population and the population gradually changes.

Note: this is not in contradiction to the the theory of neutral evolution. (which says what ?)

Processes that MIGHT go beyond inheritance with variation and selection?

- •Horizontal gene transfer and recombination
- •Polyploidization (botany, vertebrate evolution) see here
- •Fusion and cooperation of organisms (Kefir, lichen, also the eukaryotic cell)
- •Targeted mutations (?), genetic memory (?) (see <u>Foster's</u> and <u>Hall's</u> reviews on directed/adaptive mutations; see <u>here</u> for a counterpoint)

•Random genetic drift

- •Gratuitous complexity
- •Selfish genes (who/what is the subject of evolution??)
- •Parasitism, altruism, Morons

selection versus drift

see Kent Holsinger's java simulations at

http://darwin.eeb.uconn.edu/simulations/simulations.html

The law of the gutter.

compare <u>drift</u> versus <u>select + drift</u>

The larger the population the longer it takes for an allele to become fixed.

Note: Even though an allele conveys a strong selective advantage of 10%, the allele has a rather large chance to go extinct.

Note#2: Fixation is faster under selection than under drift.

BUT

s=0

Probability of fixation, P, is equal to frequency of allele in population. Mutation rate (per gene/per unit of time) = u ; freq. with which allele is generated in diploid population size N =u*2N Probability of fixation for each allele = 1/(2N)

Substitution rate =

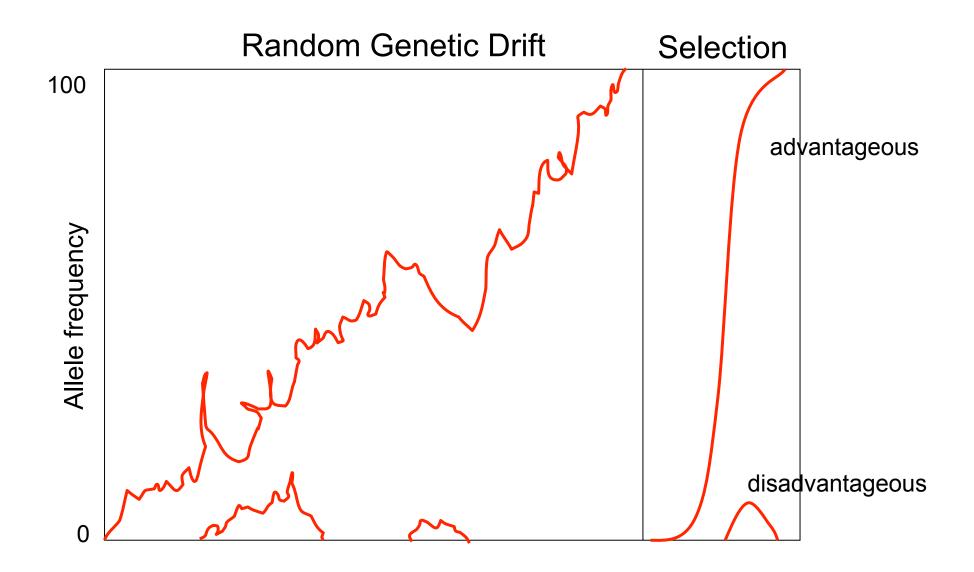
frequency with which new alleles are generated * Probability of fixation=u*2N *1/(2N) = u

Therefore:

If f s=0, the substitution rate is independent of population size, and equal to the mutation rate !!!! (NOTE: Mutation unequal Substitution!) This is the reason that there is hope that the molecular clock might sometimes work.

Fixation time due to drift alone:

 $t_{av} = 4*N_e$ generations (N_e=effective population size; For n discrete generations N_e= n/(1/N₁+1/N₂+....1/N_n)


s>0

Time till fixation on average: $t_{av} = (2/s) \ln (2N)$ generations (also true for mutations with negative "s" ! discuss among yourselves)

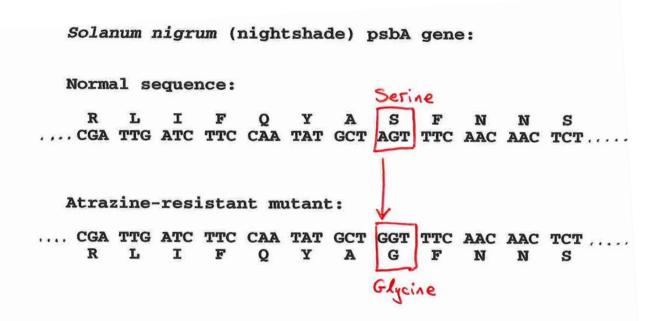
E.g.: N=10⁶, s=0: average time to fixation: 4*10⁶ generations s=0.01: average time to fixation: 2900 generations

N=10⁴, s=0: average time to fixation: 40.000 generations s=0.01: average time to fixation: 1.900 generations

=> substitution rate of mutation under positive selection is larger than the rate wite which neutral mutations are fixed.

Modified from from www.tcd.ie/Genetics/staff/Aoife/GE3026/GE3026_1+2.ppt

Positive selection


- A new allele (mutant) confers some <u>increase</u> in the **fitness** of the organism
- Selection acts to favour this allele
- Also called adaptive selection or Darwinian selection.

NOTE: **Fitness** = ability to survive and <u>reproduce</u>

Modified from from www.tcd.ie/Genetics/staff/Aoife/GE3026/GE3026_1+2.ppt

Advantageous allele

Herbicide resistance gene in nightshade plant

Modified from from www.tcd.ie/Genetics/staff/Aoife/GE3026/GE3026_1+2.ppt

Negative selection

- A new allele (mutant) confers some <u>decrease</u> in the fitness of the organism
- Selection acts to remove this allele
- Also called purifying selection

Modified from from www.tcd.ie/Genetics/staff/Aoife/GE3026/GE3026_1+2.ppt

Deleterious allele

Human breast cancer gene, BRCA2

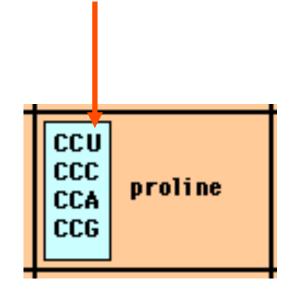
5% of breast cancer cases are familial Mutations in BRCA2 account for 20% of familial cases

Normal (wild type) allele

2780 2790 2810 2820 2830 2840 2850 2860 2870 2880 2890 2900 ICCATGGTTTTWTATGGAGACACAGGTGAT----AAGCAACCCAAGTOTCAATTAAAAAAGATTTGGTTTATGTTCTTGCAGAGGAGAACAAAAATAGTGTAAAGCAGCATATAAAAATGACTCTC fhrMetValLeuTyrGlyAspThrGlyAsp LysGlnProLysCysGlnLeuLysLysIleTrpPheMetPheLeuGlnArgArgThrLysIleVal Mutant allele (Montreal 440 Stop codon Family) 4 base pair deletion Causes frameshift Modified from from www.tcd.ie/Genetics/staff/Aoife/GE3026/GE3026 1+2.ppt

Neutral mutations

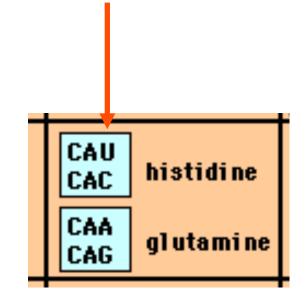
- Neither advantageous nor disadvantageous
- Invisible to selection (no selection)
- Frequency subject to 'drift' in the population
- **Random drift** random changes in small populations


Types of Mutation-Substitution

- Replacement of one nucleotide by another
- Synonymous (Doesn't change amino acid)
 - Rate sometimes indicated by Ks
 - Rate sometimes indicated by d_s
- Non-Synonymous (Changes Amino Acid)
 - Rate sometimes indicated by Ka
 - Rate sometimes indicated by d_n

(this and the following 4 slides are from mentor.lscf.ucsb.edu/course/ spring/eemb102/lecture/Lecture7.ppt)

Genetic Code – Note degeneracy				
of 1 st vs 2 nd vs 3 rd position sites				
UUU phenyl UUC alanine	UCU UCC UCA serine	UAU UAC tyrosine	UGU UGC cysteine	
UUA UUG leucine	UCA Ser The UCG	UAA UAG stop	UGA stop UGG tryptophan	
CUU CUC CUA CUA CUG	CCU CCC CCA CCG	CAU CAC histidine CAA CAG glutamine	CGU CGC CGA CGG	
AUU AUC AUA AUA Methionine	ACU ACC ACA ACG	AAU AAC AAA AAA AAG 1ysine	AGU AGC AGA AGA AGG arginine	
GUU GUC GUA GUG	GCU GCC GCA GCG	GAU aspartic GAC acid GAA glutamic GAG acid	GGU GGC GGA GGG	


Genetic Code

Four-fold degenerate site – Any substitution is synonymous

From: mentor.lscf.ucsb.edu/course/spring/eemb102/lecture/Lecture7.ppt

Genetic Code

Two-fold degenerate site – Some substitutions synonymous, some non-synonymous

From: mentor.lscf.ucsb.edu/course/spring/eemb102/lecture/Lecture7.ppt

Measuring Selection on Genes

- Null hypothesis = neutral evolution
- Under neutral evolution, synonymous changes should accumulate at a rate equal to mutation rate
- Under neutral evolution, amino acid substitutions should also accumulate at a rate equal to the mutation rate

From: mentor.lscf.ucsb.edu/course/spring/eemb102/lecture/Lecture7.ppt

Counting#s/#aSerSerSerSerSerSpecies1SerSerSerSerSerSpecies2TGTTGTTGTTGTAla

#s = 2 sites	To assess selection pressures one needs to
#a = 1 site	calculate the rates (Ka, Ks), i.e. the
	occurring substitutions as a fraction of the
#a/#s=0.5	<u>possible</u> syn. and nonsyn. substitutions.

Things get more complicated, if one wants to take transition transversion ratios and codon bias into account. See chapter 4 in Nei and Kumar, Molecular Evolution and Phylogenetics.

Modified from: mentor.lscf.ucsb.edu/course/spring/eemb102/lecture/Lecture7.ppt

dambe

Two programs worked well for me to align nucleotide sequences based on the amino acid alignment,

One is <u>DAMBE</u> (only for windows). This is a handy program for a lot of things, including reading a lot of different formats, calculating phylogenies, it even runs codeml (from PAML) for you.

The procedure is not straight forward, but is well described on the help pages. After installing DAMBE go to HELP -> general HELP -> sequences -> align nucleotide sequences based on ...->

If you follow the instructions to the letter, it works fine.

DAMBE also calculates Ka and Ks distances from codon based aligned sequences.

dambe (cont)

Seq. Analysis

🔏 Data Analysis in Molecular Biology and Evolution Eliz Construction Operation Dhula a an ati File **DAMBE Help** Edit Bookmark Options Help File Help Topics Back Print << >> 🔟 Contents 🔍 Index 👫 Search Align nuc. seg. against aligned aa. seg. •••• Overview Why: One frustrating experience I have often had with aligning protein-coding nucleotide sequences is the introduction of many frameshift indels in the aligned sequences, even if the protein genes are known to be all If you 🖻 👊 Main Menu functional and do not have these frameshifting indels. In other words, the introduced frameshifting indels in the will b aligned sequences are alignment artefacts, and the correctly aligned sequences should have complete codons, not 🗄 🔶 File one or two nucleotides, inserted or deleted. is incl 🗄 🔶 Edit One way to avoid the above alignment problem is to align the protein-coding nucleotide sequences against amino the eld acid sequences. This obviously requires amino acid sequences which can be obtained in two ways. First, if you have and do nucleotide sequences of good quality, then you can translate the sequences into amino acids. Second, if you are 🗈 Align seque working on nucleotide sequences deposited in GenBank, then typically you will find the corresponding translated wish t amino acid sequences. DAMBE can read both the nucleotide sequence and the corresponding amino acid sequence 🗈 Alian nuc. 🤅 in a GenBank sequence. If you Sequences How: Here I illustrate the use of this special feature by assuming that you already have a file containing unaligned inform protein-coding nucleotide sequences, say unaligned.fas, in your hard disk. View Seaue also a Open the unaligned.fas file. When asked whether to align the sequences, click No. The unaligned sequences will Get Rid of ! then be read into DAMBE's buffer. Now click Sequences|Work on Amino Acid Sequences to translate the assist Delete sea protein-coding nucleotide sequences into amino acid sequences. If the translation results in a number of termination codons embedded in the sequences (represented by "*"), then either your nucleotide sequences are of poor quality Delete dup Citatic or they might be from pseudogenes. In either case you should give up aligning your nucleotide sequences against these junky amino acid sequences. Work on Co Xia, X If the translation looks good, then click Sequence|Align sequences with Clustal to align the translated amino acid Work on A sequences. Once this is done, you have a set of aligned amino acid sequences in the DAMBE buffer for you to align Xia, X your nucleotide sequences against. Work on cd Click Sequence/Align nuc. seq. against aligned aa seq. A standard file Open/Save dialog box will appear. p Work on cd Choose the unaligned.fas file again, which contains the unaligned nucleotide sequences. DAMBE will align the Work on cd nucleotide sequences against the aligned amino acid sequences in the buffer. This procedure ensures that no frameshifting indels are introduced as an alignment artefact. Work on cd If your sequences were retrieved from GenBank, then most protein-coding genes will already have translated amino Restore se acid sequences included in the FEATURES table of GenBank files. You can use DAMBE to first read in all amino acid sequences, align these amino acid sequences, and then ask DAMBE to splice out the corresponding CDS, and Change sed align the CDS sequences against aligned amino acid sequences in DAMBE buffer. File: No file 🗈 Get Comple

aa based nucleotide alignments (cont)

An alternative is the tranalign program that is part of the emboss package. On bbcxsrv1 you can invoke the program by typing tranalign.

Instructions and program description are <u>here</u>.

If you want to use your own dataset in the lab on Monday, generate a codon based alignment with either *dambe* or *tranalign* and save it as a nexus file **and** as a phylip formated multiple sequence file (using either clustalw, PAUP (export or tonexus), dambe, or <u>readseq</u> on the web)

PAML (codeml) the basic model

 $q_{ij} = \begin{cases} 0, & \text{if the two codons differ at more than one position,} \\ \pi_j, & \text{for synonymous transversion,} \\ \kappa \pi_j, & \text{for synonymous transition,} \\ \omega \pi_j, & \text{for nonsynonymous transversion,} \\ \omega \kappa \pi_j, & \text{for nonsynonymous transition,} \end{cases}$

The equilibrium frequency of $\operatorname{codon} j(\pi_j)$ can be considered a free parameter, but can also be calculated from the nucleotide frequencies at the three codon positions (control variable CodonFreq). Under this model, the relationship holds that $\omega = d_N/d_S$, the ratio of nonsynonymous/synonymous substitution rates. This basic model is fitted by specifying model = 0 NSsites = 0, in the control file codeml.ctl. It forms the basis for more sophisticated models implemented in codeml.

sites versus branches

You can determine omega for the whole dataset; however, usually not all sites in a sequence are under selection all the time.

PAML (and other programs) allow to either determine omega for each site over the whole tree, *Branch Models*, or determine omega for each branch for the whole sequence, *Site Models*.

It would be great to do both, i.e., conclude codon 176 in the vacuolar ATPases was under positive selection during the evolution of modern humans – alas, a single site does not provide any statistics

Sites model(s)

work great have been shown to work great in few instances. The most celebrated case is the influenza virus HA gene.

A talk by Walter Fitch (slides and sound) on the evolution of this molecule is here .

This <u>article by Yang et al, 2000</u> gives more background on ml aproaches to measure omega. The dataset used by Yang et al is here: <u>flu data.paup</u>.

sites model in MrBayes

The MrBayes block in a nexus file might look something like this:

```
begin mrbayes;
set autoclose=yes;
lset nst=2 rates=gamma nucmodel=codon omegavar=Ny98;
mcmcp samplefreq=500 printfreq=500;
mcmc ngen=500000;
sump burnin=50;
sumt burnin=50;
end;
```

Vincent Daubin and Howard Ochman: Bacterial Genomes as New Gene Homes: The Genealogy of ORFans in *E. coli. Genome Research* 14:1036-1042, 2004

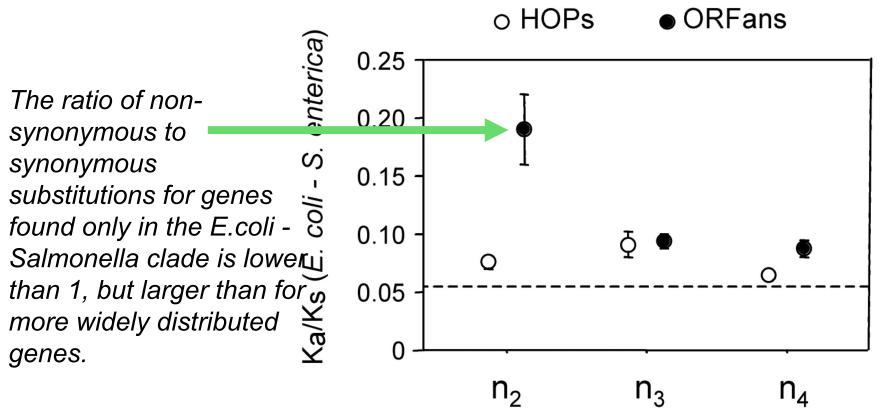


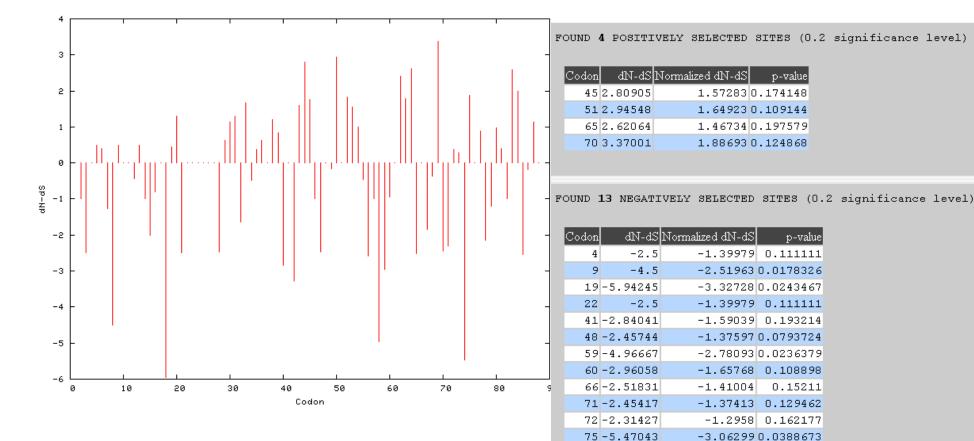
Fig. 3 from Vincent Daubin and Howard Ochman, Genome Research 14:1036-1042, 2004

Trunk-of-my-car analogy: Hardly anything in there is the is the result of providing a selective advantage. Some items are removed quickly (purifying selection), some are useful under some conditions, but most things do not alter the fitness.

Could some of the inferred purifying selection be due to the acquisition of novel detrimental characteristics (e.g., protein toxicity)?

where to get help

read the manuals and help files check out the discussion boards at <u>http://www.rannala.org/phpBB2/</u>


else

there is a new program on the block called <u>hy-phy</u> (=hypothesis testing using phylogenetics).

The easiest is probably to run the analyses on the authors datamonkey.

hy-phy Results of an analysis using the SLAC approach

86-2.54472

-1.42483 0.151309

more output might still be <u>here</u>

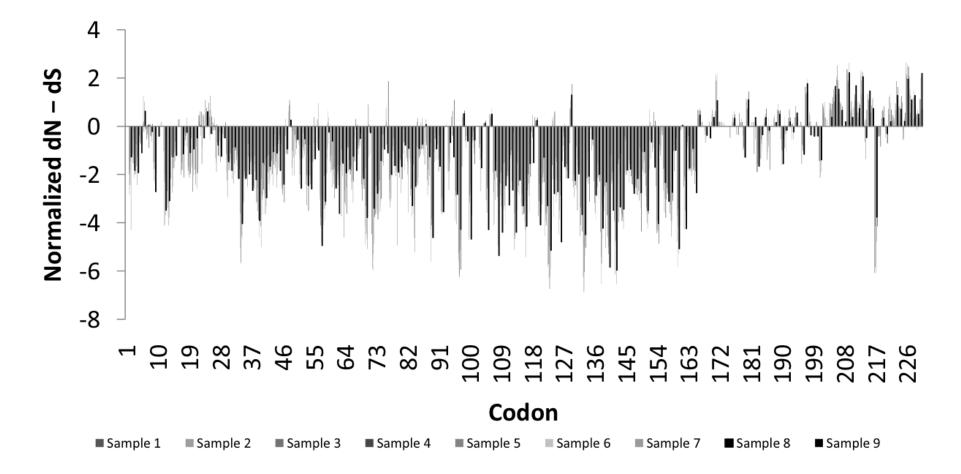
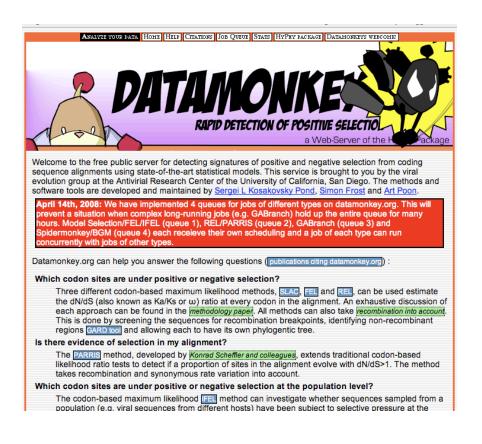


Fig 1. Patterns of substitutions: Bars represent dN > dS (positive) or dN < dS (negative) in random samples of 148 - 150 sequences (A) and the whole dataset of 1312 viruses (B). Included in B are regions of mapped activity and 3D structures of the RNA-binding domain (RBD, panel I) [21] and Effector domain (ED, rotated to expose the 7 β -sheets (panel II) and 2 α -helices (panel II)) [7] with residues under negative (yellow/brown), neutral (gray) or positive (red) selection highlighted. Residues 208-230 not included in the 3D structure of the ED are disordered (compare with figure 5). Note sites with dN > dS map on the helix motifs of the ED or the linkers flanking them or the disordered region.

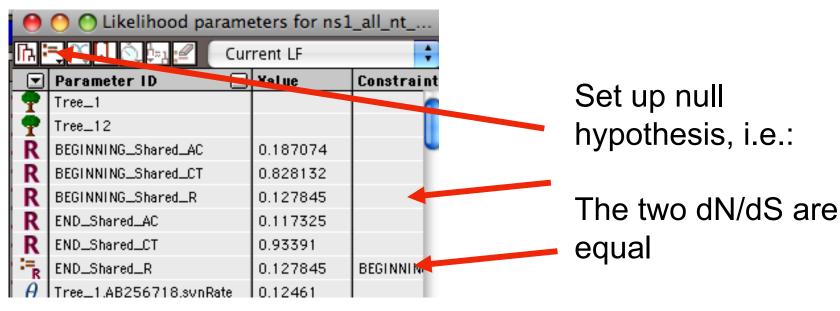

Hy-Phy -

Hypothesis Testing using Phylogenies.

Using Batchfiles or GUI

Information at http://www.hyphy.org/

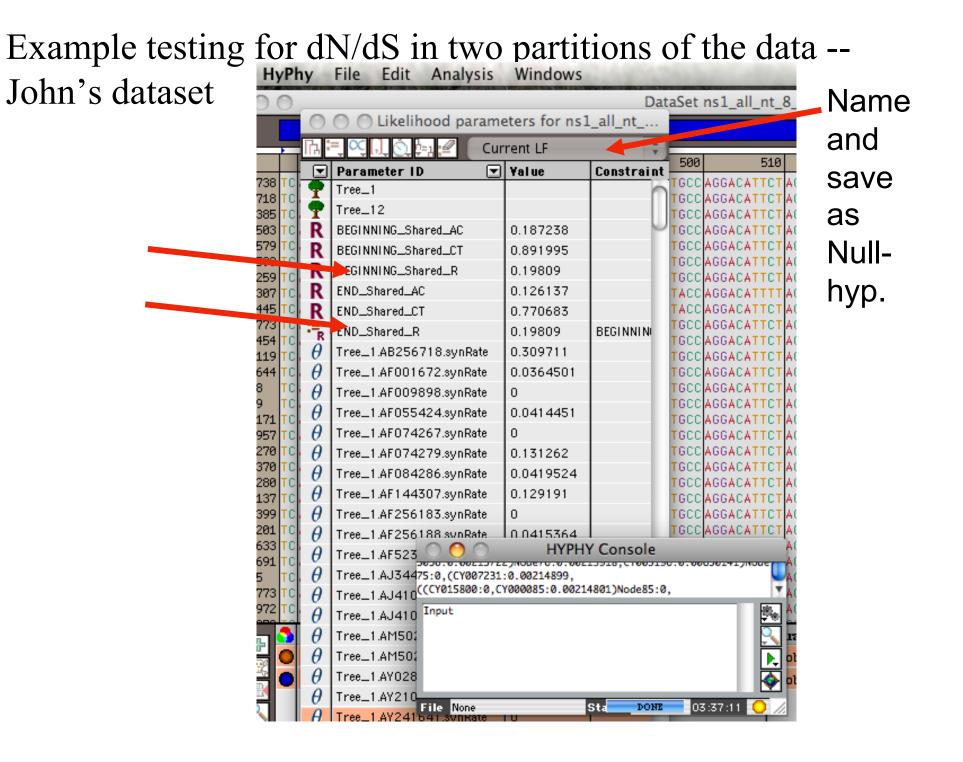
Selected analyses also can be performed online at http://www.datamonkey.org/

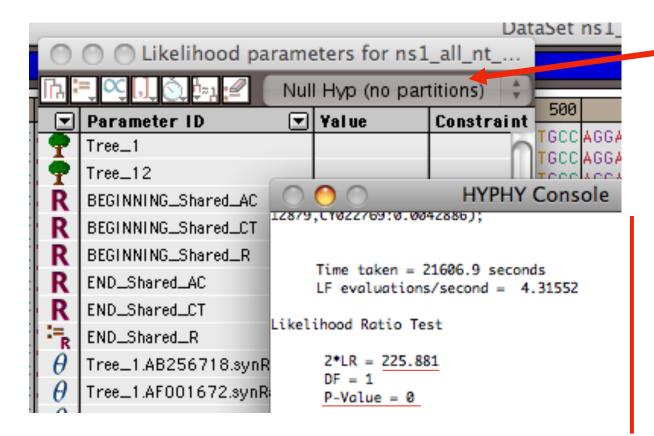

O O DataSet ns1_all_nt_8_sample												
[
		460	470	480	490	500	510	520	530	540	550	560
05738	тс	ACAGAAGACG GT	GCTATAGT	GGCTGAAATA	TCTCCTATTC	COTCOATGOO	AGGACATTCT	FACAGAGGATG	TCAA <mark>A</mark> AATGC	AATTGGAATC	CTCATCGGTG	G <mark>acttgaatg</mark> gaatga
56718		ACAGAAGATG <mark>G</mark> T		GGCTGAAATT								GACTTGAATG GAATGA
97385		ACAGAAGATG <mark>G</mark> T										GACTTGAATG GAATGA
23503	· - I	ACAGAGGATG <mark>G</mark> T		GGCTGAAATT								GACTTGAATG GAATGA
05579		ACAGAAGATGGT		GGCTGAAATT								GACTTGAATG GAATGA
35593	· - r	ACAGAAGATGGT		GGCTGAAATT								GACTTGAATG GAATGA
24259		ACAGAAGATGGT		GGCTGAAATA								GACTTGAATG GAATGA
		ACAGAAAGTGGT		GGCTGAAATA								GACTTGAATG GAATGA
28445		ACAGAAAGTGGT		GGCTGAAATA								GACTTGAATG GAATGA
05773	· - I	ACAGAAGATGGT		GGCTGAAATA	TCTCCCATTC							GACTTGAATG GAATGA
51454	· - r	ACGGAAGATGGT										GACTTGAATG GAATGA
51119		ACAGAAGATG GT		GGCTGAAATA								GACTTGAATG GAATGA
33644		ACAGAGGATG <mark>G</mark> T		AGCTGAAATA								GACTTGAATG GAATGA
168		ACAGATGACG <mark>G</mark> T										GACTTGAATG GAATGA
389	· - I	ACAGACGATG <mark>G</mark> T		AGCTGAAATT	тстессттте							AACTTGAATG GAATGA
97171	· - I	ACTGAAGATG <mark>GC</mark>										GACTTGAATG GAATGA
19957	· - r	ACAGACAATG <mark>G</mark> C			TCTCCCATTC							GACTTGAATG GAATGA
04270	тс	ACAGACGATG <mark>G</mark> T	GCCATCGT	GGCTGAAATA	TCTCCCATTC							GACTTGAATG <mark>GAATGA</mark>
04370	тс	ACAGATGATG <mark>G</mark> T	GCCATTGT	AGCTGAAATA	TCTCCCATTC	CTTCTATGCC	AGGACATTCT	FACAGAGGATG	TCAAAAATGC	AATTGGAATC	CTCATCGGTG	GACTTGAATG <mark>GAATGA</mark>
33280	тс	ACAGACGATG <mark>G</mark> A	GCCATTGT	AGCTGAAATA	TCTCCCATTC	CTTCTATGCC	AGGACATTCT	FACAGAGGATG	TCAAAAATGC	AATTGGAATC	CTCATCGGTG	GACTTGAATG <mark>GAATGA</mark>
21137	тс	ACAGACGATG <mark>GC</mark>	GCCATTG	AGCTGAAATA								AACTTGAATG <mark>GAATGA</mark>
16399	тс	ACAGACGATG <mark>GC</mark>	GCCATTG	AGCTGAAATA	TCTCCCATTC	CCTCCATGCC	AGGACATTCT	FACAGAGGATG	TCAAAAATGC	AATTGGAATC	CTCATCGGTG	GACTTGAATG GAATGA
21201	тс	ACAGACGATG <mark>G</mark> C	GCCATTG	AGCTGAAATA	TCTCCCATTC	COTCOATGOO	AGGACATTCT	FACAGAGGATG	TCAAAAATGC	AATTGGAATC	CTCATCGGTG	GACTTGAATG GAATGA
21633	тс	ACAGACGATG <mark>G</mark> C	ACCATTG	AGCTGAAATA	TCTCCCATTC	COTCOATGOO	AGGACATTCT	FACAGAGGATG	TCAAAAATGC	AATTGGAATC	CTCATCGGTG	GACTTGAATG GAATGA
14691	тс	ACAGATGATG GC	GCCATTGT	AGCTGAAATA	TOTOCOATTO	COTOTATGOO	AGGACATTCT	FACAGAGGATG	TCAAAAATGC/	AATTGGAATC	CTCATCGGTG	GATTTGAATG GAATGA
105	тс	ACAGATGATG GC	GCCATTGT	AGCTGAAATA	TOTOCOATTO	CCTCTATGCC	AGGACATTCT	FACAGAGGATG	TCAAAAATGC	AATTGGAATC	CTCATCGGTG	GACTTGAATG GAATGA
04773	тс	ACAGATGATG GC	GCCATTGT	AGCTGAAATA	TOTOCOATTO	CCTCTATGCC	AGGACATTCT	FACAGAGGATG	TCAAAAATGC/	AATTGGAATC	CTCATCGGTG	GACTTGAATG GAATGA
14972	тс	ACAGATGATG GC	GCCATTGT	AGCTGAAATA	TOTOCOATTO	COTOTATGOO	AGGACATTCT	FACAGAGGATG	TCAA <mark>A</mark> AATGC	AATTGGAATC	CTCATCGGTG	GACTTGAATG GAATGA
1000									To the later			<u></u>
+	2	Partition Name			1 00			arameters 💌	-		late Classes	
		END	Codon	Tree_1		MG94xTN93_	,3x4 💌 G	;lobal 🖃	Partition			
	ام	BEGINNING	Codon	Tree 1	2 🔳	MG94xTN93	3x4 ⊡ G	lobal 🔳	Partition			
	-1							U				
00												

Set up two partitions, define model for each, optimize likelihood

0	😑 🔿 Likelihood parame	eters for ns1	_all_nt
ſħ:	= 🔍 🕕 🖄 🤖 🖉 🛛 Cur	+	
	Parameter ID 💌	Yalue	Constraint
•	Tree_1		
7	Tree_12		
R	BEGINNING_Shared_AC	0.187074	
R	BEGINNING_Shared_CT	0.828132	
R	BEGINNING_Shared_R	0.127845	
R	END_Shared_AC	0.117325	
R	END_Shared_CT	0.93391	
R	END_Shared_R	0.946316	
θ	Tree_1.AB256718.synRate	0.12461	
θ	Tree_1.AF001672.synRate	0.016737	
θ	Tree_1.AF009898.synRate	0	
θ	Tree_1.AF055424.synRate	0.017357	
θ	Tree_1.AF074267.synRate	0	
θ	Tree_1.AF074279.synRate	0.0527182	
θ	Tree_1.AF084286.synRate	0.0176037	
θ	Tree_1.AF144307.synRate	0.0528252	
θ	Tree_1.AF256183.synRate	0	
θ	Tree_1.AF256188.synRate	0.0174124	
θ	Tree_1.AF523503.synRate	0.0527042	
θ	Tree_1.AJ344036.synRate	0	
θ	Tree_1.AJ410594.synRate	0.0350104	
θ	Tree_1.AJ410598.synRate	0.0174538	
θ	Tree_1.AM502792.synRate	0.0174516	
0	T 1 AME02003	0	

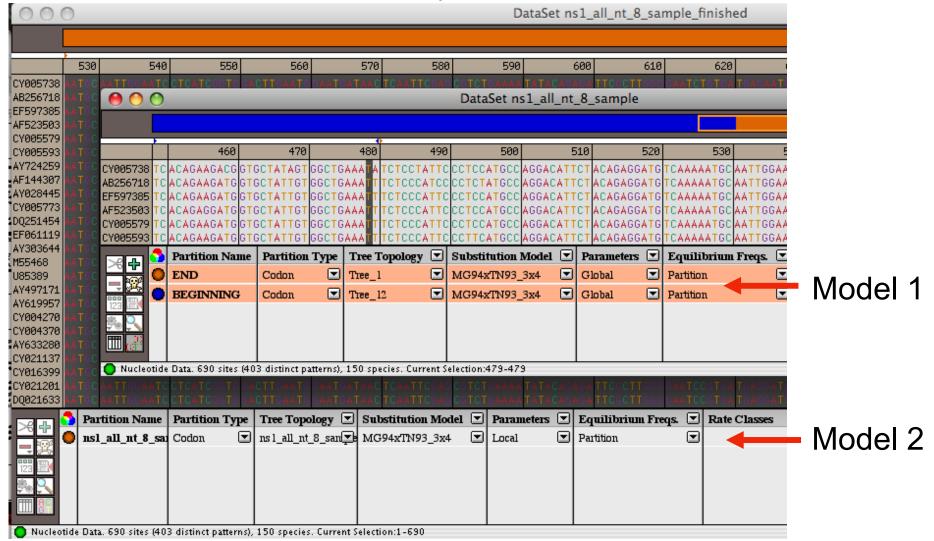
Safe Likelihood Function then select as alternative

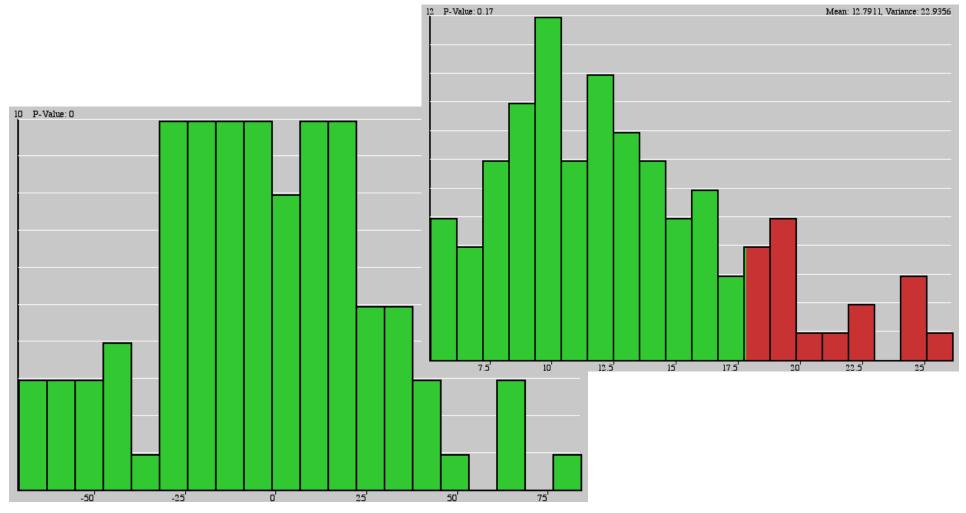

The dN/dS ratios for the two partitions are different.



(to do, select both rows and then click the define as equal button on top)

Example testing for	HyPł		File Edit Analysis	Windows	5 01 U	ic uata			
John's dataset	nyri D O	iy	File Eult Allalysis	WITCOWS	Dat	taSet ns1_all_nt_8_			
	50	0	O Likelihood param	eters for ns1		aset insi_all_lit_6_			
		ШАГ		500 510					
	738 TC	2	=) Yalue	Constraint	TGCC AGGACATTCT AC			
	718 TC	I	Tree_1			TGCCAGGACATTCTAC			
	385 TC	R	Tree_12 BEGINNING_Shared_AC	0 107270		TGCC AGGACATTCT AC			
	503 TC 579 TC	R	BEGINNING_Shared_CT	0.187238		TGCC AGGACATTCT AC			
	593 TC	R	BEGINNING_Shared_R	0.091995		TGCC AGGACATTCT AC			
	259 70	R	END_Shared_AC	0.126137		TGCCAGGACATTCTAC			
	307 TC 445 TC	R	END_Shared_CT	0.770683		TACCAGGACATTTTAC TACCAGGACATTCTAC			
			END_Shared_R	0.19809	BEGINNIN	TGCCAGGACATTCTAC			
	454 TC	θ	Tree_1.AB256718.synRate	0.309711	DEGINININ	TGCCAGGACATTCTAC			
	119 TC 644 TC		Tree_1.AF001672.synRate	0.0364501		TGCC AGGACATTCT AC			
	644 TC 8 TC	θ		0.0384301		TGCC AGGACATTCT AC			
	9 TC	θ	Tree_1.AF009898.synRate	-		TGCC AGGACATTCT AC			
	171 TC	θ	Tree_1.AF055424.synRate	0.0414451		TGCCAGGACATTCTAC			
	957 TC	θ	Tree_1.AF074267.synRate	0		TGCC AGGACATTCT AC			
	270 TC 370 TC	θ	Tree_1.AF074279.synRate	0.131262		TGCC AGGACATTCT AC			
	280 TC	θ	Tree_1.AF084286.synRate	0.0419524		TGCCAGGACATTCTAC			
	137 TC	θ	Tree_1.AF144307.synRate	0.129191		TGCC AGGACATTCT AC			
	399 TC	θ	Tree_1.AF256183.synRate	0		TGCC AGGACATTCT AC			
	201 TC 633 TC	θ	Tree_1.AF256188 synRate	10.0415364	I Y Console				
	691 TC	θ	Tree_1.AF523	HIPH	r Console	0.0.00000111/1000- A			
	5 TC, θ Tree_1.AJ34475:0,(CY007231:0.00214899,								
	773 TC	θ		.1000085:0.0021	4801)Node85:0				
	972 TC	θ	Tree_1.AJ410 Input			2 😤 🕹			
	_ 🔁	θ	Tree_1.AM502			R 💫 13			
		θ	Tree_1.AM502			Dì			
		θ	Tree_1.AY028						
		θ	Tree_1.AY210						
		θ	File None Tree_1.AY241641.SVnRate	TU	Sta DONE	03:37:11 🜔 🥖			


Example testing for dN/dS in two partitions of the data --



After selecting LRT (= Likelihood Ratio test), the console displays the result, i.e., the beginning and end of the sequence alignment have significantly different dN/dS ratios.

Alternatively, especially if the the two models are not nested, one can set up two different windows with the same dataset:

Simulation under model 1, evalutation under model 2, calculate LR Compare real LR to distribution from simulated LR values. The result might look something like this or this

