MCB 5472

Ps1 BLAST,
Perl: Arrays, Loops

J. Peter Gogarten
Office: BPB 404
phone: 860 486-4061,

Email: cooarten@uconn.edu

Psi-Blast Results

nrr

NEW

NEW

NEW

NEW

NEW

NEW

<l

<l

<l

<l

<l

<l

Query: 55670331 (intein)

gl|b/UbUUU|db]|BAAUBLEZ. 2| DNA-dependent DUNA polymerase |[FPyrococ... 44 fe—u4
gi|2708498|gb|AABD2484.1| ribonucleotide reductase homolog [Baci... 48 7e-04
gi|50812254 | ref |NP 389888.2| hypothetical protein BSUZ20060 [Baci... 48 8e-04

gi|7475800|pir]| |AG69927

gi]15211863 | emb|CACSINO

ribonucleoside-diphosphate reductase (alp... 48 8e-04

gi|57867420| ref|YP 18907

link to sequence here, - 2o o.00

check BLink © hat... 46 0.003

gi|1459094]1 | ref |NP 14301517 ATFPF-dependent nellcase LHR [FYLococC. .. 46 0.003

Run PSI-Blast iteration 3 |

Sequences with E-value WORSE than threshold

7 gi]|14590539|ref|NP 142607.1]| secretory protein kinase [Pyrococcu... 44 0.006

7 gi]|45513096|ref| 2P 00164662.1| <C0OG1372: Intein/homing endonuclea... 44 0.009

r—

C R s amAmA

~ a ca - e . . aa L -

PSI BLAST and E-values!

Psi-Blast is for finding matches among divergent sequences (position-

specific information)
WARNING: For the nth iteration of a PS| BLAST search, the E-value

gives the number of matches to the profile NOT to the initial query
sequence! The danger is that the profile was corrupted in an earlier

iteration.

The NCBI has released a new version of blast. The command line version is blast+ .
The new version is faster and allows for more flexibility, but at present we still have
problems with running it on the cluster.

The new commands are equivalent to the blastall commmands:

Functionality offered by BLAST+ applications

The functionality offered by the BLAST+ applications has been organized by program type,
as to more closely resemble Web BLAST. The following graph depicts a correspondence
between the NCBI C Toolkit BLAST command line applications and the BLAST+
applications:

blastd bemd

The legacy blast.pl script that is part of blast+ translates blastall commands into the

blast+ syntax. E.g.:
$./legacy blast.pl megablast -i query.fsa -d nt -o mb.out --print only
/opt/ncbi/blast/bin/blastn -query query.fsa -db "nt" -out mb.out

$

From the blast+ manual:

The easiest way to get started using these command line applications is by means of the
legacy blast.pl PERL script which is bundled along with the BLAST+ applications. To utilize
this script, simply prefix it to the invocation of the C toolkit BLAST command line application
and append the --path option pointing to the installation directory of the BLAST+ applications.
For example, instead of using

blastall -i query -d nr -o blast.out
use

legacy blast.pl blastall -i query -d nr -o blast.out
--path /opt/blast/bin

3) Write a short Perl script that calculates the circumference of a circle
given a radius provided by the user.

B! /usr/bin/perl -w

"This program finds the circumference of a circle. n";

"What is your radius?.n";

(my $radius = <STDIN=);

"The circumference of a circle with radius of $radius is\n";
2%3.141592654*%radius. "n"; #Equation for circle circumference

#1/usr/bin/perl -w
#As usual there are 1000 ways to do this.
#one is to define $pi or the constant PI, eg. as follows
#use constant PI == 4*atanZ(1,1);
#or use a module
Math::Trig; #allows to use the Math::Trig module that is part of perl

$circumference=0; #reset variables

"“nEnter radius:";

(v Sradivs=<=);
$circumference= $radius*pi*2;

"“snwith radius=%radius ,“nthe circumference is $circumferencesnsn";

The best way to find which module to use 1s google. You can
search core modules at http://perldoc.perl.org/search.html?

Old Assignment for Monday

1) Write a 2 sentence outline for your student project

2) Read chapter PS5 and P12 conditional statements and on “for,

foreach, and while” loops.
http://korflab.ucdavis.edu/Unix_and Perl/unix_and_perl v2.3.3.pdf

Background:
@a=(0..50);
This assigns numbers from 0 to 50 to an array,
so that $a[0] =0; $a[1] =1; $a[50] =50

3) Write perl scripts that add all numbers from 1 to 50. Try to do
this using at least two different control structures.

4) Create a program that reads in a sequence stored in a file handed
to the program on the command line and determines GC content
of a sequence. Use class3.pl as a starting point.

Go through class3.pl script
(http://gogarten.uconn.edu/mcb5472 2010/class3.pl).

If time go through Olga’s search for distant homologs
webpage at (use cd00081for PSSM viewer)
http://www.mta.ca/~ozhaxybayeva/bioinf2010/class10.html

%GC counter, part A: read 1n seqs

#! fusr/binsper | -ull

- B
FHEHSEHHHERTNPUT Sequence, concatenated into a single stringiEEREEEEEE

#zskip annotation lines in case of fasta. if multiple annotation lines, concatenate these too.
#

={(@ARGY==1) {di= "please provide name of the file in the command line!!%n";}
':$filennm~-iapﬂ“[8], #takes filenname from input line
n{IN, "< $filenane") or die “"cannot open $filenome:$!"; #assigns filehandle IN to filename or dies
seq=" #OSSIgnS empty string
‘illre=
my$names= "' ;
@bas e:=(), #assigns empty list

i le{de A($line=<IN=)){
p{$line);
{$line=~'"=") { #look for beginning of line starting with = {* is an anchor for the beginning of
$name .= $line;

! K iﬂeq .= $line ;

KAz AL

%GC counter, part B: move segs to array

L
HEREEEEEEEE nove sequence to array

check for all CAPS, report non ATGCs, remove white spaces
#

$seq =~ atgc/ATGC/; #*translates all ATGC to upper case
' ;# substitutes all white spaces \s with nothing globally in $seq
@basess= (//,8=eq); #splits string into separate elements (bases)

frnum_bases=@bases; ¥length of array

%GC counter, part B: calculate %GC

###################Calculate GC Content
flu$num_GC=0;

{ $i=8; $i<{Pnun_bases); $i++) #counts Gs and Cs in @bases Note the number of bases is one larger than the arr

{

(($bases[$i]=""G") (fbases[$i]=""C")) #if it matches G or C increase counter
{Snum_GL++;

H
('{{(Ibases[31]=""06") (tbasez[3i]=""A") ($bases[$i]=""T") ($bases[$i]=""C")))
{ "Harning there is a strange base fbases[$i] before position $i%n";
:i;E‘. rropr :§;++; }
H
i {muderrors)){$num_bases=$num_bases-$errors} .

$Eﬂ_content=($num_GE/$num_bazea)*18@;
"““nThe GC content of the sequence in the file ".'"'."§filename”."'""'. " is $GC_content’%.%\n\n";
(!($name A "Annotation line{s) in $filename was/were $nameln";}

AL "o

Control structures: Sum 1..50

AL T Lt v VIV IOV Juieeie g

#1/usr/bin/perl -w

$sum=0; While() { }

$count=0;

while ($count <50) {
$count++; #this is tricky in the last loop $count is 49 and then increased to 50 and added

$sum += $count;
};

print "$sum\n”

#!/usr/bin/perl/ for (° o) { }

$sum=0;
$count=0;

for ($count =0; $count < 51; $count++) {
#$sum=$sum+$count;
$sum += $count

|

print "$sum\n”

Control structures: Sum 1..50

#1/usr/bin/perl/

$sum=0;

@array = (1..50);

foreach (@array) { foreach () { };
#$sum=%sum+$_;
Ssum += $_;

b

print "$sum\n”

#1/usr/bin/perl/
$sum=0;
$count=0;
while O { :
$sum += $count; while () §
$count+=1;
if ($count >50) {last}; if() {last};

Infinite loop with last:

} s
print "$sum\n" ?

Control structures: Sum 1..50

#1/usr/bin/perl

$sum=0;

@array = (1..50);

$count=0; .

while (defined($array[$count])) while (deﬁned ()) { };
{

$sum += $array[$count];

$count += 1;

#print "$array[$count]\t $sum\n";
};

print "$sum\n"

for (,,)1{ }

#!/usr/bin/perl -w

$sum=0;
@array = (0..50); .
$count=0; Counting elements of an
for ($count=1; ($Scount<51); $count++){
$sum += $array[$count]; array

#$temp=%array[$count];
#print "\$count=%count sum is $temp\t {

E— Could have started at 0

print "$sum\n";

For Monday

Write a script that reads in a sequence and prints out
the reverse complement.

Modify your script to that it can handle a sequence that
goes over several lines.

Background: Scomp =~ tr/ATGC/TACG/;
#translates every Aiin $comp into a T; every T into an A;
every Gintoa Candevery Cintoa G

*Read P 14 on hashes, write the program suggested in
the chapter.

1

0 && 1
o1
45
45-45
45/45
45==45
45<=>45
45<=50
55>=50
50<=>70
451=45
451=50

For Monday

Do the following statements evaluate to true or false? (Check P5)

Operator Meaning Example

—— equal to if ($x == $y)
| = not equal to if ($x '= $y)
> greater than if ($x > $y)
< less than if ($x < $y)
>= greater than or equal to| if ($x >= $y)
<= less than or equal to |if ($x <= $y)

<=> comparison if ($x <=> $y)

from http://korflab.ucdavis.edu/Unix and Perl/unix and perl v2.3.3.pdf

String comparison operators in Perl

Operator| Meaning Example
eq equal to if ($x eq $y)
ne not equal to | if ($x ne $y)
gt greater than [if ($x gt $y)
1t less than if ($x 1t $y)
concatenation| %z = $x . %y
cmp comparison if ($x cmp $y)

f YOI hnttp://korflab.ucdavis.edu/Unix and Perl/unix and perl v2.3.3.pdf

Most of the smaller assignments should be solvable within half an
hour. Using the notes, the text book and the internet try to solve
one problem for not more than one hour. Then ask me or Tim for
help.

In total, the assignments for one week might take a few hours, but
if it goes beyond 6 hours total, ask for help, or hand in the latest
version of your attempt to solve the assignment. Sometimes, a
little help can go a long way. The main reason for the assignments
1s to make you actually write code and to learn form the mistakes
you make.

Hashes are tables that relate keys and values.

(in the array the number of the field could be considered the key:
@a=(1..51) => $a[0]=1, $a[50]=51)

In a %ash the entry for the key 1s the address where the value 1s stored.

E.g., you could have a hash where the students age is stores as value and the
student ID is the key.

But you also could use the students name as key and the ID or age or as
value. This works very economically, especially if the table is sparse.

my (%studentID, %student first name, %studentGPA);
SstudentID{gogarten}=9999;

$Sstudent first name{gogarten}=‘Johann Peter’;
SstudentGPA{gogarten}=3.2;

In many instances you need to make sure that the key you want to uses has not yet been
assigned. If (exists ($studentID{gogarten}) {};

Go through class 4.pl
http://gogarten.uconn.edu/mcb5472 2010/class4.pl
http://gogarten.uconn.edu/mcb5472 2010/gi_list.txt

