
MCB 5472
Psi BLAST,

Perl: Arrays, Loops

J. Peter Gogarten
Office: BPB 404
phone: 860 486-4061,
Email: gogarten@uconn.edu

Psi-Blast Results Query: 55670331 (intein)

link to sequence here,
check BLink

Psi-Blast is for finding matches among divergent sequences (position-
specific information)
WARNING: For the nth iteration of a PSI BLAST search, the E-value
gives the number of matches to the profile NOT to the initial query
sequence! The danger is that the profile was corrupted in an earlier
iteration.

PSI BLAST and E-values!

The NCBI has released a new version of blast. The command line version is blast+ .
The new version is faster and allows for more flexibility, but at present we still have
problems with running it on the cluster.

The new commands are equivalent to the blastall commmands:

The legacy_blast.pl script that is part of blast+ translates blastall commands into the
blast+ syntax. E.g.:
$./legacy_blast.pl megablast -i query.fsa -d nt -o mb.out --print_only
/opt/ncbi/blast/bin/blastn -query query.fsa -db "nt" -out mb.out  
$

From the blast+ manual:

3) Write a short Perl script that calculates the circumference of a circle
given a radius provided by the user.

The best way to find which module to use is google. You can
search core modules at http://perldoc.perl.org/search.html?

Old Assignment for Monday
1)  Write a 2 sentence outline for your student project
2)  Read chapter P5 and P12 conditional statements and on “for,

foreach, and while” loops.
http://korflab.ucdavis.edu/Unix_and_Perl/unix_and_perl_v2.3.3.pdf

Background:  
@a=(0..50);  
This assigns numbers from 0 to 50 to an array,
so that $a[0] =0; $a[1] =1; $a[50] =50

3) Write perl scripts that add all numbers from 1 to 50. Try to do
this using at least two different control structures.

4) Create a program that reads in a sequence stored in a file handed
to the program on the command line and determines GC content
of a sequence. Use class3.pl as a starting point.

Go through class3.pl script
(http://gogarten.uconn.edu/mcb5472_2010/class3.pl).

If time go through Olga’s search for distant homologs
webpage at (use cd00081for PSSM viewer)
http://www.mta.ca/~ozhaxybayeva/bioinf2010/class10.html

%GC counter, part A: read in seqs

%GC counter, part B: move seqs to array

%GC counter, part B: calculate %GC

Control structures: Sum 1..50

while () { }

for (, ,) { }

Control structures: Sum 1..50

foreach () { };

Infinite loop with last:

while () {

if() {last};
};

Control structures: Sum 1..50

while (defined ()) { };

for (, ,) { }

Counting elements of an
array

Could have started at 0

For Monday

Write a script that reads in a sequence and prints out
the reverse complement.
Modify your script to that it can handle a sequence that
goes over several lines.

• Background: $comp =~ tr/ATGC/TACG/;  
#translates every A in $comp into a T; every T into an A;
every G into a C and every C into a G

• Read P 14 on hashes, write the program suggested in
the chapter.

For Monday
Do the following statements evaluate to true or false? (Check P5)
•  1
•  0 && 1
•  0||1
•  45
•  45-45
•  45/45
•  45==45
•  45<=>45
•  45<=50 from http://korflab.ucdavis.edu/Unix_and_Perl/unix_and_perl_v2.3.3.pdf

•  55>=50
•  50<=>70
•  45!=45
•  45!=50

from http://korflab.ucdavis.edu/Unix_and_Perl/unix_and_perl_v2.3.3.pdf

Most of the smaller assignments should be solvable within half an
hour. Using the notes, the text book and the internet try to solve
one problem for not more than one hour. Then ask me or Tim for
help.

In total, the assignments for one week might take a few hours, but
if it goes beyond 6 hours total, ask for help, or hand in the latest
version of your attempt to solve the assignment. Sometimes, a
little help can go a long way. The main reason for the assignments
is to make you actually write code and to learn form the mistakes
you make.

Hashes are tables that relate keys and values.
 (in the array the number of the field could be considered the key:
 @a=(1..51) => $a[0]=1, $a[50]=51)

In a %ash the entry for the key is the address where the value is stored.
E.g., you could have a hash where the students age is stores as value and the
student ID is the key.
But you also could use the students name as key and the ID or age or …. as
value. This works very economically, especially if the table is sparse.
my (%studentID, %student_first_name, %studentGPA);
$studentID{gogarten}=9999;
$student_first_name{gogarten}=‘Johann Peter’;
$studentGPA{gogarten}=3.2;
In many instances you need to make sure that the key you want to uses has not yet been
assigned. If (exists ($studentID{gogarten}) {};

Go through class 4.pl
http://gogarten.uconn.edu/mcb5472_2010/class4.pl
http://gogarten.uconn.edu/mcb5472_2010/gi_list.txt

