MCB 5472

Bayesian approaches and types of selection

Peter Gogarten
Office: BSP 404
phone: 860 486-4061,
Email: gogarten@uconn.edu

Old Assignment

-Given a multiple fasta sequence file*, write a script that for each sequence extract the gi number and the species name. and rewrites the file so that the annotation line starts with the gi number, followed by the species/strain name, followed by a space. (The gi number and the species name should not be separated by or contain any spaces replace them by .. This is useful, because clustalw will recognize the number and name as handle for the sequence.)

Assume that the annotation line follows the NCBI convention and begins with the $>$ followed by the gi number, and ends with the species and strain designation given in []
Example:
>gi|229240723|ref|ZP_04365119.1| primary replicative DNA helicase; intein [Cellulomonas flavigena DSM 20109]

Example multiple sequence file is here.

- Work on your student project

```
#!/usr/bin/perl
# namerewrite.pl
use strict; use warnings;
die "usage: namerewrite.pl <limit>\n" unless @ARGV == 1;
my $filename=$ARGV[0];
open(IN, "< $filename") or die "cannot open $filename:$!";
open(OUT, "> namerewrite.out");
my $line='';
my $species=' ';
my $rest='';
while(defined(my $line=<IN>)){
    chomp($line);
    if ($line=~/^>/) {
                                    $line =~ s/\s/ /g;
                    #$line =~ s/\./_/g;
    #$line =~ s/\-/_/g;
    $line =~ s/\>gi\|(\w+)\I//g;|
    my $gi=$1;
    $line =~ s/\[(.+)\]//g;
                    my $rearrange = '>'.$gi.'_'.$1.' '.$line;
                    print "$rearrange\n";
                    }
        else {
            $line =~ tr/atgc/ATGC/;
            $line =~ s/\s//g;
            }
        print "$line\n";
        }
close(IN);
close(OUT);
```

```
#!/usr/bin/perl
unless(@ARGV==1) {die "please provide file name in command line \n
file should contain multiple sequences in fasta format \n\n";}
$filename=$ARGV[0];
open(IN, "< $filename") or die "cannot open $filename:$!";
$outfile=$filename.".giSpec";
open(OUT, "> $outfile") or die "cannot open $outfile:$!";
while(<IN>){
    $line = $_;
    if($line =~ m/^>/){ #find annotation line
        if ($line =~ m/gi\|\d*/) # find gi number
            {$gi=$& ; # assign match to $gi
            $gi =~ s/gi\I///g; #sub gil with nothing
            # $gi =~ s/\I//g;} #sub | with nothing no longer needed reg ex does not
            else {$nogi++;
            $gi="noGInumber".$nogi}; #in case no match to gi\|\d* found
        if ($line =~ m/\[.*\]/){ #look for species/strain name
            $name = $&; # assign match to $name
            $name =~ s/\[//g; #sub [ with nothing - note \ before [ in Reg Ex
            $name =~ s/\]//;g} #sub ] with nothing
            else {$name="NoNameFound"}; #report that no name was included
    $id="$gi_"."$name";
    $id =~ tr/ /_/;
    chomp($id);
    print OUT ">$id\n";
    }else{
    print OUT $line;
    }
}
```

```
open (FILE,"glcosylTransferases.fasta");
while ($in=<FILE>) {
if ($in =~ '\>') {
$in=~ s/\>//g;
@split = split ('\[',$in);
@splat = split ('\]',$split[1]);
@split = split ('\।',$in);
$splat[0] =~ s/ /_/g;
print ">$split[1]$splat[0] $in";
} else {
print $in;
}}
```


Write script from exam

Work of Student project

Elliot Sober's Gremlins

Observation: Loud noise in the attic

Hypothesis: gremlins in the attic playing bowling

Likelihood =
P (noise|gremlins in the attic)

P(gremlins in the attic|noise)

Bayes' Theorem

Posterior
Probability
represents the degree to which we believe a given model accurately describes the situation given the available data and all of our prior information I

Prior
Probability
describes the degree to which we believe the model accurately describes reality based on all of our prior information.

Normalizing constant

Reverend Thomas Bayes (1702-1761)

Alternative Approaches to Estimate Posterior Probabilities

Bayesian Posterior Probability Mapping with MrBayes

 (Huelsenbeck and Ronquist, 2001)Problem:
Strimmer's formula $p_{i}=\frac{L_{i}}{L_{1}+L_{2}+L_{3}} \quad \begin{aligned} & \text { only considers } 3 \text { trees } \\ & \text { (those that maximize the likelihood for } \\ & \text { the three topologies) }\end{aligned}$

Solution:

Exploration of the tree space by sampling trees using a biased random walk (Implemented in MrBayes program)

Trees with higher likelihoods will be sampled more often

$$
\mathrm{P}_{\mathrm{i}} \approx \frac{\mathrm{~N}_{\mathrm{i}}}{\mathrm{~N}_{\text {total }}} \quad \begin{aligned}
& \text {,where } \mathrm{N}_{\mathrm{i}}-\text { number of sampled trees of topology } i, i=1,2,3 \\
& N_{\text {total }}-\text { total number of sampled trees (has to be large) }
\end{aligned}
$$

Illustration of a biased random walk

Figure generated using MCRobot program (Paul Lewis, 2001)

ml mapping

From: Olga Zhaxybayeva and J Peter Gogarten BMC Genomics 2002, 3:4

ml mapping

Figure 5. Likelihood-mapping analysis for two biological data sets. (Upper) The distribution patterns. (Lower) The occupancies (in percent) for the seven areas of attraction. (A) Cytochrome- b data from ref. 14. (B) Ribosomal DNA of major arthropod groups (15).

From: Korbinian Strimmer and Arndt von Haeseler Proc. Natl. Acad. Sci. USA Vol. 94, pp. 6815-6819, June 1997

Decomposition of Phylogenetic Data

Phylogenetic information present in genomes

Break information into small quanta of information
(bipartitions or embedded quartets)

Analyze spectra to detect transferred genes and plurality consensus.

TOOLS TO ANALYZE
 PHYLOGENETIC INFORMATION FROM MULTIPLE GENES IN GENOMES:

Bipartition Spectra (Lento Plots)

BIPARTITION OF A PHYLOGENETIC TREE

Bipartition (or split) - a division of a phylogenetic tree into two parts that are connected by a single branch. It divides a dataset into two groups, but it does not consider the relationships within each of the two groups.

Yellow vs Rest
$* * * *$. ${ }^{*}$.
compatible to illustrated

Orange vs Rest
incompatible to illustrated
bipartition
"Lento"-plot of 34 supported bipartitions (out of 4082 possible)

13 gammaproteobacterial genomes
(258 putative orthologs):
-E.coli

- Buchnera
-Haemophilus
-Pasteurella
- Salmonella
- Yersinia pestis (2 strains)
- Vibrio
- Xanthomonas
(2 sp.)
-Pseudomonas
-Wigglesworthia

There are 13,749,310,575 possible unrooted tree topologies for 13 genomes

Consensus clusters of eight significantly supported bipartitions

Phylogeny of putatively transferred gene (virulence factor homologs (mviN))

only 258 genes analyzed
"Lento"-plot of supported bipartitions (out of 501 possible)

PROBLEMS WITH BIPARTITIONS (A)

$\begin{aligned} & Q_{1}=\{ \\ & 4567 \end{aligned}$
1567
2567
3567
3467
1467
2467
2367
1367
1267
1237
1247
1347
2347
2357
1357
1257
1457
2457
3457
3456
1456
2456
2356
1356
1256
1236
1246
1346
2346
2345
1345
1245
1235
1234 3

A single rogue sequence that moves from one end of a Hennigian comb to the other changes all bipartition

Decay of bipartition support with number of OTUs

Phylogenies used for simulation

Example for decay of bipartition support with number of OTUs

Only branches with better than 70\% bootstrap support are shown

Decay of bipartition support with number of OTUs

Each value is the average of 10 simulations using seq-gen. Simulated sequences were evaluated using PHYML. Model for simulation and evaluation WAG $+\Gamma(\alpha=1,4$ rate categories)

Bipartition Paradox:

- The more sequences are added, the lower the support for bipartitions that include all sequences. The more data one uses, the lower the bootstrap support values become.
- This paradox disappears when only embedded splits for 4 sequences are considered.

Bootstrap support values for embedded quartets

Quartet spectral analyses of genomes iterates over three loops:
$>$ Repeat for all bootstrap samples.
$>$ Repeat for all possible embedded quartets.
$>$ Repeat for all gene families.

Boostrap Support Values for Embedded Quartets

 vs.
Bipartitions:

Performance evaluation using sequence simulations and phylogenetic reconstructions

Methodology :

Repeat 100 times

Input tree

Results:

Maximum Bootstrap Support value for Bipartition separating (AB) and (CD)

Number of Interior Branches

Maximum Bootstrap Support value for embedded Quartet (AB),(CD)

Number of interior branches

A Synechocystis sp.(1), C.tepidum(2), R.palustris(3), R.capsulatus(4)
$((1,3), 2,4)$

COMPARISON OF DIFFERENT SUPPORT MEASURES

A: mapping of posterior probabilities according to Strimmer and von Haeseler

B: mapping of bootstrap support values

C: mapping of bootstrap support values from extended datasets

bootstrap values from extended datasets

Quartet decomposition analysis of 19 Prochlorococcus and marine Synechococcus genomes. Quartets with a very short internal branch or very long external branches as well those resolved by less than $\mathbf{3 0 \%}$ of gene families were excluded from the analyses to minimize artifacts of phylogenetic

the gradualist point of view

Evolution occurs within populations where the fittest organisms have a selective advantage. Over time the advantages genes become fixed in a population and the population gradually changes.
This reasoning (with many more details) is known as the modern synthesis.
Note: this is not in contradiction to the the theory of neutral evolution. (which says what ?)

Processes that MIGHT go beyond inheritance with variation and selection?
-Horizontal gene transfer and recombination
-Polyploidization (botany, vertebrate evolution) see here
-Fusion and cooperation of organisms (Kefir, lichen, also the eukaryotic cell)

- Targeted mutations (?), genetic memory (?) (see Foster's and Hall's reviews on directed/adaptive mutations; see here for a counterpoint)
-Random genetic drift
- Gratuitous complexity
-Selfish genes (who/what is the subject of evolution??)
-Parasitism, altruism, Morons
- Mutationism, hopeful monsters (see here for a critical discussion by Arlin Stolzfus)

selection versus drift

see Kent Holsinger's java simulations at
http://darwin.eeb.uconn.edu/simulations/simulations.html
The law of the gutter.
compare drift versus select + drift
The larger the population the longer it takes for an allele to become fixed.
Note: Even though an allele conveys a strong selective advantage of $\mathbf{1 0 \%}$, the allele has a rather large chance to go extinct.
Note\#2: Fixation is faster under selection than under drift.

$\mathrm{S}=0$

Probability of fixation, P , is equal to frequency of allele in population.
Mutation rate (per gene/per unit of time) $=u$; freq. with which allele is generated in diploid population size $\mathrm{N}: \mathrm{u}^{*} 2 \mathrm{~N}$ Probability of fixation for each allele $=1 /(2 \mathrm{~N})$

Substitution rate (the rate with which mutations are fixed in a lineage) $=$ frequency with which new alleles are generated * Probability of fixation= $u^{*} 2 \mathrm{~N} * 1 /(2 \mathrm{~N})=\mathrm{u}$
Therefore:
If $\mathbf{f} \mathbf{s}=\mathbf{0}$, the substitution rate is independent of population size, and equal to the mutation rate !!!!

This is the reason that there is hope that the molecular clock might sometimes work.

Fixation time due to drift alone:

$\mathbf{t}_{\mathrm{av}}=4 * \mathrm{~N}_{\mathrm{e}}$ generations
($\mathrm{N}_{\mathrm{e}}=$ effective population size; For n discrete generations
$\mathrm{N}_{\mathrm{e}}=\mathrm{n} /\left(1 / \mathrm{N}_{1}+1 / \mathrm{N}_{2}+\ldots . .1 / \mathrm{N}_{\mathrm{n}}\right)$

Time till fixation on average:
$\mathrm{t}_{\mathrm{av}}=(2 / \mathrm{s}) \ln (2 \mathrm{~N})$ generations
(also true for mutations with negative " s "! discuss among yourselves)
E.g.: $\mathrm{N}=10^{6}$,
$\mathrm{s}=0$: average time to fixation: $4 * 10^{6}$ generations
$\mathrm{s}=0.01$: average time to fixation: 2900 generations
$\mathrm{N}=10^{4}$,
$\mathrm{s}=0$: average time to fixation: 40.000 generations
$\mathrm{s}=0.01$: average time to fixation: 1.900 generations
=> substitution rate of mutation under positive selection is larger than the rate wite which neutral mutations are fixed.

Random Genetic Drift
 Selection

Positive selection

- A new allele (mutant) confers some increase in the fitness of the organism
- Selection acts to favour this allele
- Also called adaptive selection or Darwinian selection.

NOTE: Fitness = ability to survive and reproduce

Advantageous allele

Herbicide resistance gene in nightshade plant

Negative selection

- A new allele (mutant) confers some decrease in the fitness of the organism
- Selection acts to remove this allele
- Also called purifying selection

Deleterious allele

Human breast cancer gene, BRCA2

5% of breast cancer cases are familial
Mutations in BRCA2 account for 20\% of familial cases

Normal (wild type) allele

Mutant allele (Montreal 440 Family)

Mutant allele
(Montreal 440
Family)
4 base pair deletion

Causes frameshift
Modified from from www.tcd.ie/Genetics/staff/Aoife/GE3026/GE3026_1+2.ppt

Neutral mutations

- Neither advantageous nor disadvantageous
- Invisible to selection (no selection)
- Frequency subject to 'drift' in the population
- Random drift - random changes in small populations

Types of Mutation-Substitution

- Replacement of one nucleotide by another
- Synonymous (Doesn't change amino acid)
- Rate sometimes indicated by Ks
- Rate sometimes indicated by d_{s}
- Non-Synonymous (Changes Amino Acid)
- Rate sometimes indicated by Ka
- Rate sometimes indicated by d_{n}
(this and the following 4 slides are from mentor.lscf.ucsb.edu/course/ spring/eemb102/lecture/Lecture7.ppt)

Genetic Code - Note degeneracy of $1^{\text {st }}$ vs $2^{\text {nd }}$ vs $3^{\text {rd }}$ position sites

Genetic Code

Four-fold degenerate site - Any substitution is synonymous

Genetic Code

Two-fold degenerate site - Some substitutions synonymous, some non-synonymous

Measuring Selection on Genes

- Null hypothesis = neutral evolution
- Under neutral evolution, synonymous changes should accumulate at a rate equal to mutation rate
- Under neutral evolution, amino acid substitutions should also accumulate at a rate equal to the mutation rate

Counting \#s/\#a

Species1	Ser	Ser	Ser Ser	Ser
	TGA	TGC	TGT TGT	TGT
	Ser	Ser	Ser Ser	Ala
Species2	TGT	TGT	TGT TGT	GGT

$$
\begin{aligned}
& \# \mathrm{~s}=2 \text { sites } \\
& \# \mathrm{a}=1 \text { site } \\
& \# \mathrm{a} / \# \mathrm{~s}=0.5
\end{aligned}
$$

To assess selection pressures one needs to calculate the rates (Ka, Ks), i.e. the occurring substitutions as a fraction of the possible syn. and nonsyn. substitutions.

Things get more complicated, if one wants to take transition transversion ratios and codon bias into account. See chapter 4 in Nei and Kumar, Molecular Evolution and Phylogenetics.

dambe

Two programs worked well for me to align nucleotide sequences based on the amino acid alignment,

One is DAMBE (only for windows). This is a handy program for a lot of things, including reading a lot of different formats, calculating phylogenies, it even runs codeml (from PAML) for you.

The procedure is not straight forward, but is well described on the help pages. After installing DAMBE go to HELP -> general HELP -> sequences -> align nucleotide sequences based on ...->

If you follow the instructions to the letter, it works fine.

DAMBE also calculates Ka and Ks distances from codon based aligned sequences.

dambe (cont)

aa based nucleotide alignments (cont)

An alternative is the tranalign program that is part of the emboss package. On bbcxsrvl you can invoke the program by typing tranalign.

Instructions and program description are here.

If you want to use your own dataset in the lab on Monday, generate a codon based alignment with either dambe or tranalign and save it as a nexus file and as a phylip formated multiple sequence file (using either clustalw, PAUP (export or tonexus), dambe, or readseq on the web)

PAML (codeml) the basic model

$$
q_{i j}= \begin{cases}0, & \text { if the two codons differ at more than one position, } \\ \pi_{j}, & \text { for synonymous transversion, } \\ \kappa \pi_{j}, & \text { for synonymous transition, } \\ \omega \pi_{j}, & \text { for nonsynonymous transversion, } \\ \omega \kappa \pi_{j}, & \text { for nonsynonymous transition }\end{cases}
$$

The equilibrium frequency of codon $j\left(\pi_{j}\right)$ can be considered a free parameter, but can also be calculated from the nucleotide frequencies at the three codon positions (control variable CodonFreq). Under this model, the relationship holds that $\omega=d_{\mathrm{N}} / d_{\mathrm{s}}$, the ratio of nonsynonymous/synonymous substitution rates. This basic model is fitted by specifying model $=0$ NSsites $=0$, in the control file codeml.ctl. It forms the basis for more sophisticated models implemented in codeml.

sites versus branches

You can determine omega for the whole dataset; however, usually not all sites in a sequence are under selection all the time.

PAML (and other programs) allow to either determine omega for each site over the whole tree, Branch Models , or determine omega for each branch for the whole sequence, Site Models .

It would be great to do both, i.e., conclude codon 176 in the vacuolar ATPases was under positive selection during the evolution of modern humans - alas, a single site does not provide any statistics....

Sites model(s)

work great have been shown to work great in few instances. The most celebrated case is the influenza virus HA gene.

A talk by Walter Fitch (slides and sound) on the evolution of this molecule is here.
This article by Yang et al, 2000 gives more background on ml aproaches to measure omega. The dataset used by Yang et al is here: flu data.paup.

sites model in MrBayes

The MrBayes block in a nexus file might look something like this:
begin mrbayes;
set autoclose=yes;
lset nst $=2$ rates=gamma nucmodel=codon omegavar=Ny98;
mcmcp samplefreq $=500$ printfreq $=500$;
memc ngen=500000;
sump burnin=50;
sumt burnin=50;
end;

Vincent Daubin and Howard Ochman: Bacterial Genomes as New Gene Homes: The Genealogy of ORFans in E. coli. Genome Research 14:1036-1042, 2004

The ratio of nonsynonymous to synonymous substitutions for genes found only in the E.coli Salmonella clade is loweni than 1, but larger than for more widely distributed genes.

Fig. 3 from Vincent Daubin and Howard Ochman, Genome Research 14:1036-1042, 2004

Trunk-of-my-car analogy: Hardly anything in there is the is the result of providing a selective advantage. Some items are removed quickly (purifying selection), some are useful under some conditions, but

Could some of the inferred purifying selection be due to the acquisition of novel detrimental characteristics (e.g., protein toxicity)?

MrBayes analyzing the *.nex.p file

1. The easiest is to load the file into excel (if your alignment is too long, you need to load the data into separate spreadsheets - see here execise $\mathbf{2}$ item $\mathbf{2}$ for more info)
2. plot LogL to determine which samples to ignore
3. for each codon calculate the the average probability (from the samples you do not ignore) that the codon belongs to the group of codons with omega >1.
4. plot this quantity using a bar graph.

plot LogL to determine which samples to ignore

for each codon calculate the the average probability

MrBayes on bbcxrv1
If you do this for your own data,
-run the procedure first for only $\mathbf{5 0 0 0 0}$ generations (takes about 30 minutes) to check that everthing works as expected,
-then run the program overnight for at least 500000 generations.
-Especially, if you have a large dataset, do the latter twice and compare the results for consistency. (I prefer two runs over 500000 generations each over one run over a million generations.)

The preferred wa to run mrbayes is to use the command line: $>\mathrm{mb}$
Do example on threonlyRS

PAML - codeml - sites model

the paml package contains several distinct programs for nucleotides (baseml) protein coding sequences and amino acid sequences (codeml) and to simulate sequences evolution.
The input file needs to be in phylip format.
By default it assumes a sequential format (e.g. here).
If the sequences are interleaved, you need to add an "I" to the first line, as in these example headers:
human goat-cow rabbit rat marsupial
1
GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC AAG GCC GCC TGG GGC AAG GTT GGC GCG CAC

61
GCT GGC GAG TAT GGT GCG GAG GCC CTG GAG AGG ATG TTC CTG TCC TTC CCC ACC ACC AAG
GCT

PAML - codeml - sites model (cont.)

the program is invoked by typing codeml followed by the name of a control file that tells the program what to do.
paml can be used to find the maximum likelihood tree, however, the program is rather slow. Phyml is a better choice to find the tree, which then can be used as a user tree.

An example for a codeml.ctl file is codeml.hv1.sites.ctl This file directs codeml to run three different models: one with an omega fixed at 1 , a second where each site can be either have an omega between 0 and 1 , or an omega of 1 , and third a model that uses three omegas as described before for MrBayes.
The output is written into a file called Hv1.sites.codeml_out (as directed by the control file).

Point out log likelihoods and estimated parameter line (kappa and omegas)
Additional useful information is in the rst file generated by the codeml
Discuss overall result.

PAML - codeml - branch model

For the same dataset to estimate the $\mathbf{d N} / \mathbf{d S}$ ratios for individual branches, you could use this file codeml.hv1.branches.ctl as control file.

The output is written, as directed by the control file, into a file called Hv1.branch.codeml_out

A good way to check for episodes with plenty of non-synonymous substitutions is to compare the dn and ds trees.

Also, it might be a good idea to repeat the analyses on parts of the sequence (using the same tree). In this case the sequences encode a family of spider toxins that include the mature toxin, a propeptide and a signal sequence (see here for more information).

Bottom line: one needs plenty of sequences to detect positive selection.

PAML - codeml - branch model

where to get help

read the manuals and help files check out the discussion boards at http://www.rannala.org/phpBB2/

else

there is a new program on the block called hy-phy (=hypothesis testing using phylogenetics).

The easiest is probably to run the analyses on the authors datamonkey.

Discussion: Other ways to detect positive selection?

Selective sweep -> fewer alleles present in population
Repeated episodes of positive selection -> high dN

If time discuss http://online.itp.ucsb.edu/online/infobio01/fitch1/

hy-phy

Results of an anaylsis using the SLAC approach

more output might still be here

Fig 1. Patterns of substitutions: Bars represent $\mathrm{dN}>\mathrm{dS}$ (positive) or $\mathrm{dN}<\mathrm{dS}$ (negative) in random samples of $148-150$ sequences (A) and the whole dataset of 1312 viruses (B). Included in B are regions of mapped activity and 3D structures of the RNA-binding domain (RBD, panel I) [21] and Effector domain (ED, rotated to expose the 7β-sheets (panel II) and 2α-helices (panel II)) [7] with residues under negative (yellow/brown), neutral (gray) or positive (red) selection highlighted. Residues 208230 not included in the 3D structure of the ED are disordered (compare with figure 5). Note sites with $\mathrm{dN}>\mathrm{dS}$ map on the helix motifs of the ED or the linkers flanking them or the disordered region.

Hy-Phy

Hypothesis Testing using Phylogenies.

Using Batchfiles or GUI

Information at http://www.hyphy.org/

Selected analyses also can be performed online at http://www.datamonkey.org/

Welcome to the free public server for detecting signatures of positive and negative selection from coding sequence alignments using state-of-the-art statistical models. This service is brought to you by the viral evolution group at the Antivirial Research Center of the University of California, San Diego. The methods software tools are developed and maintained by Sergei L Kosakovsky Pond, Simon Frost and Art Poon. April 14th, 2008: We have implemented 4 queues for jobs of different types on datamonkey.org. This will prevent a situation when complex long-running jobs (e.g. GABranch) hold up the entire queue for many hours. Model Selection/FEL/IFEL (queue 1), REL/PARRIS (queue 2), GABranch (queue 3) and Spidermonkey/BGM (queue 4) each receieve their own scheduling and a job of each type can run

Datamonkey.org can help you answer the following questions
Which codon sites are under positive or negative selection?
Three different codon-based maximum likelihood methods, SLAC, FEl and REL, can be used estimate the $\mathrm{dN} / \mathrm{dS}$ (also known as $\mathrm{Ka} / \mathrm{Ks}$ or ω) ratio at every codon in the alignment. An exhaustive discussion of each approach can be found in the methodology paper. All methods can also take recombination into account. This is done by screening the sequences for recombination breakpoints, identifying non-recombinant regions GARD tool and allowing each to have its own phylogentic tree.
Is there evidence of selection in my alignment?
The PARRIS method, developed by Konrad Scheffler and colleagues, extends traditional codon-based
likelihood ratio tests to detect if a proportion of sites in the alignment evolve with $\mathrm{dN} / \mathrm{dS}>1$. The method takes recombination and synonymous rate variation into account.
Which codon sites are under positive or negative selection at the population level?
The codon-based maximum likelihood FFEl method can investigate whether sequences sampled from a Dooulation (e.a. viral seauences from different hosts) have been subiect to selective pressure at the

Example testing for dN/dS in two partitions of the data --

 John's dataset

Set up two partitions, define model for each, optimize likelihood

Example testing for $\mathrm{dN} / \mathrm{dS}$ in two partitions of the data --

 John's dataset| | | Current LF | $?$ |
| :---: | :---: | :---: | :---: |
| 回 | Parameter ID \quad - | Yalue | Constraint |
| 1 | Tree_1 | | 0 |
| T | Tree_12 | | |
| R | BEGINNING_Shared_AC | 0.187074 | |
| R | beginning_Shared_CT | 0.828132 | |
| R | beginning_Shared_R | 0.127845 | |
| R | END_Shared_AC | 0.117325 | |
| R | END_Shared_CT | 0.93391 | |
| R | END_Shared_R | 0.946316 | |
| θ | Tree_1.AB256718.synRate | 0.12461 | |
| θ | Tree_1.AF001672.synRate | 0.016737 | |
| θ | Tree_1.AF009898.synRate | 0 | |
| θ | Tree_1.AF055424.synRate | 0.017357 | |
| θ | Tree_1.AF074267.synRate | 0 | |
| θ | Tree_1.AF074279.synRate | 0.0527182 | |
| θ | Tree_1.AF084286.synRate | 0.0176037 | |
| θ | Tree_1.AF 144307.synRate | 0.0528252 | |
| θ | Tree_1.AF256183.synRate | 0 | |
| θ | Tree_1.AF256188.synRate | 0.0174124 | |
| θ | Tree_1.AF523503.synRate | 0.0527042 | |
| θ | Tree_1.AJ344036.synRate | 0 | |
| θ | Tree_1.AJ410594.synRate | 0.0350104 | |
| θ | Tree_1.AJ410598.synRate | 0.0174538 | |
| θ | Tree_1.AM502792.synRate | 0.0174516 | |

Save Likelihood Function then
select as alternative

The $\mathrm{dN} / \mathrm{dS}$ ratios for the two partitions are different.

Example testing for $\mathrm{dN} / \mathrm{dS}$ in two partitions of the data --

 John's dataset

Set up null hypothesis, i.e.:

The two dN/dS are equal
(to do, select both rows and then click the define as equal button on top)

Example testing for $\mathrm{dN} / \mathrm{dS}$ in two partitions of the data -John's dataset

DataSet ns1_all_nt_8_

Example testing for dN/dS in two partitions of the data --

 John's dataset| | Current LF | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | Parameter ID | Yalue | Constraint | 500 | 518 |
| | Tree_1 | | | GCC | AGGACATTCTA |
| T | Tree_12 | | | | AGGACATTCT |
| R | BEGINNING_Shared_AC | 0.187238 | | GCC | AGGACATTCT |
| R | BEGINNING_Shared_CT | 0.891995 | | TGCC | AGGACATTCT |
| N | EGINNING_Shared_R | 0.19809 | | | AGGACATCT AgGACATTCT |
| R | END_Shared_AC | 0.126137 | | TACC | AGGACATTTT |
| R | END_Shared_CT | 0.770683 | | TACC | AGGACATTCT |
| ${ }^{-} \mathrm{R}$ | LND_Shared_R | 0.19809 | BEGINNIN | TGCC | AGGACATTCT |
| θ | Tree_1.AB256718.synRate | 0.309711 | | TGCC | AGGACATTCT |
| θ | Tree_1.AF001672.synRate | 0.0364501 | | TGCC | AGgacattc |
| θ | Tree_1.AF009898.synRate | 0 | | TGCC | AGGACATTCT |
| θ | Tree_1.AF055424.synRate | 0.0414451 | | TGCC | AGGACATTCT |
| θ | Tree_1.AF074267.synRate | 0 | | TGCC | AGgacattc |
| θ | Tree_1.AF074279.synRate | 0.131262 | | TGCC | aggacattct |
| θ | Tree_1.AF084286.synRate | 0.0419524 | | TGCC | AGGACATTC |
| θ | Tree_1.AF 144307.synRate | 0.129191 | | TGCC | AGGACATTC |
| θ | Tree_1.AF256183.synRate | 0 | | TGCC | AGGACATTCT |
| θ | Tree_1.AF256188 sunRate | n 0415364 | | TGCC | AGGACATTC |
| θ | Tree_1.AF523 | HYPH | Console | | |
| θ | Tree_1.AJ34475s:0, (CVeoerze | :0.00214899, | | | |
| θ | Tree_1.AJ410 $0^{\text {CCCV015800:8, C }}$ | Yree885:0.0021 | 801)Node85: 0 | | |
| θ | Tree_1.AJ410 Input | | | | 茅 |
| θ | Tree_1.AM50: | | | | 8 |
| θ | Tree_1.AM50: | | | | , |
| θ | Tree_1.AY028 | | | | 6 |
| θ | Tree_1.AY210 File No | | | | 7:11 |

Example testing for $\mathrm{dN} / \mathrm{dS}$ in two partitions of the data -John's dataset

Example testing for $\mathrm{dN} / \mathrm{dS}$ in two partitions of the data -John's dataset

Alternatively, especially if the the two models are not nested, one can set up two different windows with the same dataset:

Example testing for dN/dS in two partitions of the data --

 John's datasetSimulation under model 1 , evalutation under model 2 , calculate LR Compare real LR to distribution from simulated LR values. The result might look something like this
this

